|
[1]Danchenko, N.; Satia, J. A.; Anthony, M. S. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 15:308-318; 2006. [2]Cameron, J. S. Lupus nephritis. J Am Soc Nephrol 10:413-424; 1999. [3]Tan, E. M.; Cohen, A. S.; Fries, J. F.; Masi, A. T.; McShane, D. J.; Rothfield, N. F.; Schaller, J. G.; Talal, N.; Winchester, R. J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271-1277; 1982. [4]Passas, C. M.; Wong, R. L.; Peterson, M.; Testa, M. A.; Rothfield, N. F. A comparison of the specificity of the 1971 and 1982 American Rheumatism Association criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 28:620-623; 1985. [5]Tucci, M.; Stucci, S.; Strippoli, S.; Silvestris, F. Cytokine overproduction, T-cell activation, and defective T-regulatory functions promote nephritis in systemic lupus erythematosus. J Biomed Biotechnol 2010:457146; 2010. [6]Pollak, V. E.; Pirani, C. L.; Schwartz, F. D. The Natural History of the Renal Manifestations of Systemic Lupus Erythematosus. J Lab Clin Med 63:537-550; 1964. [7]Lenz, O.; Contreras, G. Treatment options for severe lupus nephritis. Arch Immunol Ther Exp (Warsz) 52:356-365; 2004. [8]Weening, J. J.; D'Agati, V. D.; Schwartz, M. M.; Seshan, S. V.; Alpers, C. E.; Appel, G. B.; Balow, J. E.; Bruijn, J. A.; Cook, T.; Ferrario, F.; Fogo, A. B.; Ginzler, E. M.; Hebert, L.; Hill, G.; Hill, P.; Jennette, J. C.; Kong, N. C.; Lesavre, P.; Lockshin, M.; Looi, L. M.; Makino, H.; Moura, L. A.; Nagata, M. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 65:521-530; 2004. [9]Weening, J. J.; D'Agati, V. D.; Schwartz, M. M.; Seshan, S. V.; Alpers, C. E.; Appel, G. B.; Balow, J. E.; Bruijn, J. A.; Cook, T.; Ferrario, F.; Fogo, A. B.; Ginzler, E. M.; Hebert, L.; Hill, G.; Hill, P.; Jennette, J. C.; Kong, N. C.; Lesavre, P.; Lockshin, M.; Looi, L. M.; Makino, H.; Moura, L. A.; Nagata, M. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 15:241-250; 2004. [10]Appel, G. B.; Cohen, D. J.; Pirani, C. L.; Meltzer, J. I.; Estes, D. Long-term follow-up of patients with lupus nephritis. A study based on the classification of the World Health Organization. Am J Med 83:877-885; 1987. [11]Austin, H. A., 3rd; Boumpas, D. T.; Vaughan, E. M.; Balow, J. E. High-risk features of lupus nephritis: importance of race and clinical and histological factors in 166 patients. Nephrol Dial Transplant 10:1620-1628; 1995. [12]Bao, H.; Liu, Z. H.; Xie, H. L.; Hu, W. X.; Zhang, H. T.; Li, L. S. Successful treatment of class V+IV lupus nephritis with multitarget therapy. J Am Soc Nephrol 19:2001-2010; 2008. [13]Bagavant, H.; Deshmukh, U. S.; Wang, H.; Ly, T.; Fu, S. M. Role for nephritogenic T cells in lupus glomerulonephritis: progression to renal failure is accompanied by T cell activation and expansion in regional lymph nodes. J Immunol 177:8258-8265; 2006. [14]Foster, M. H. T cells and B cells in lupus nephritis. Semin Nephrol 27:47-58; 2007. [15]Jacobi, A. M.; Mei, H.; Hoyer, B. F.; Mumtaz, I. M.; Thiele, K.; Radbruch, A.; Burmester, G. R.; Hiepe, F.; Dorner, T. HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann Rheum Dis 69:305-308; 2010. [16]Cheema, G. S.; Roschke, V.; Hilbert, D. M.; Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44:1313-1319; 2001. [17]Crow, M. K. Costimulatory molecules and T-cell-B-cell interactions. Rheum Dis Clin North Am 30:175-191, vii-viii; 2004. [18]Scheinecker, C.; Zwolfer, B.; Koller, M.; Manner, G.; Smolen, J. S. Alterations of dendritic cells in systemic lupus erythematosus: phenotypic and functional deficiencies. Arthritis Rheum 44:856-865; 2001. [19]Sakaguchi, S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531-562; 2004. [20]Abe, J.; Ueha, S.; Suzuki, J.; Tokano, Y.; Matsushima, K.; Ishikawa, S. Increased Foxp3(+) CD4(+) regulatory T cells with intact suppressive activity but altered cellular localization in murine lupus. Am J Pathol 173:1682-1692; 2008. [21]Crispin, J. C.; Martinez, A.; Alcocer-Varela, J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun 21:273-276; 2003. [22]Valencia, X.; Yarboro, C.; Illei, G.; Lipsky, P. E. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178:2579-2588; 2007. [23]Scalapino, K. J.; Daikh, D. I. Suppression of glomerulonephritis in NZB/NZW lupus prone mice by adoptive transfer of ex vivo expanded regulatory T cells. PLoS One 4:e6031; 2009. [24]Fontenot, J. D.; Rasmussen, J. P.; Williams, L. M.; Dooley, J. L.; Farr, A. G.; Rudensky, A. Y. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329-341; 2005. [25]Tang, Q.; Bluestone, J. A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9:239-244; 2008. [26]Zheng, S. G.; Wang, J.; Horwitz, D. A. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 180:7112-7116; 2008. [27]Esfandiari, E.; McInnes, I. B.; Lindop, G.; Huang, F. P.; Field, M.; Komai-Koma, M.; Wei, X.; Liew, F. Y. A proinflammatory role of IL-18 in the development of spontaneous autoimmune disease. J Immunol 167:5338-5347; 2001. [28]Summers, S. A.; Steinmetz, O. M.; Li, M.; Kausman, J. Y.; Semple, T.; Edgtton, K. L.; Borza, D. B.; Braley, H.; Holdsworth, S. R.; Kitching, A. R. Th1 and Th17 cells induce proliferative glomerulonephritis. J Am Soc Nephrol 20:2518-2524; 2009. [29]Tucci, M.; Lombardi, L.; Richards, H. B.; Dammacco, F.; Silvestris, F. Overexpression of interleukin-12 and T helper 1 predominance in lupus nephritis. Clin Exp Immunol 154:247-254; 2008. [30]Tucci, M.; Quatraro, C.; Lombardi, L.; Pellegrino, C.; Dammacco, F.; Silvestris, F. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum 58:251-262; 2008. [31]Yap, D. Y.; Lai, K. N. Cytokines and their roles in the pathogenesis of systemic lupus erythematosus: from basics to recent advances. J Biomed Biotechnol 2010:365083; 2010. [32]Hakkim, A.; Furnrohr, B. G.; Amann, K.; Laube, B.; Abed, U. A.; Brinkmann, V.; Herrmann, M.; Voll, R. E.; Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107:9813-9818; 2010. [33]Schiffer, L.; Bethunaickan, R.; Ramanujam, M.; Huang, W.; Schiffer, M.; Tao, H.; Madaio, M. P.; Bottinger, E. P.; Davidson, A. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J Immunol 180:1938-1947; 2008. [34]Schwartz, M. M.; Korbet, S. M.; Katz, R. S.; Lewis, E. J. Evidence of concurrent immunopathological mechanisms determining the pathology of severe lupus nephritis. Lupus 18:149-158; 2009. [35]Schwartz, M. M.; Korbet, S. M.; Lewis, E. J. The prognosis and pathogenesis of severe lupus glomerulonephritis. Nephrol Dial Transplant 23:1298-1306; 2008. [36]Morimoto, S.; Tokano, Y.; Nakano, S.; Watanabe, T.; Tamayama, Y.; Mitsuo, A.; Suzuki, J.; Kaneko, H.; Sekigawa, I.; Takasaki, Y. Chemoattractant mechanism of Th1 cells in class III and IV lupus nephritis. Autoimmunity 42:143-149; 2009. [37]Calvani, N.; Tucci, M.; Richards, H. B.; Tartaglia, P.; Silvestris, F. Th1 cytokines in the pathogenesis of lupus nephritis: the role of IL-18. Autoimmun Rev 4:542-548; 2005. [38]Wiekowski, M. T.; Leach, M. W.; Evans, E. W.; Sullivan, L.; Chen, S. C.; Vassileva, G.; Bazan, J. F.; Gorman, D. M.; Kastelein, R. A.; Narula, S.; Lira, S. A. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol 166:7563-7570; 2001. [39]Aggarwal, S.; Ghilardi, N.; Xie, M. H.; de Sauvage, F. J.; Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910-1914; 2003. [40]Harrington, L. E.; Hatton, R. D.; Mangan, P. R.; Turner, H.; Murphy, T. L.; Murphy, K. M.; Weaver, C. T. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123-1132; 2005. [41]Veldhoen, M.; Stockinger, B. TGFbeta1, a "Jack of all trades": the link with pro-inflammatory IL-17-producing T cells. Trends Immunol 27:358-361; 2006. [42]Roussel, L.; Houle, F.; Chan, C.; Yao, Y.; Berube, J.; Olivenstein, R.; Martin, J. G.; Huot, J.; Hamid, Q.; Ferri, L.; Rousseau, S. IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol 184:4531-4537; 2010. [43]Shahrara, S.; Pickens, S. R.; Mandelin, A. M., 2nd; Karpus, W. J.; Huang, Q.; Kolls, J. K.; Pope, R. M. IL-17-mediated monocyte migration occurs partially through CC chemokine ligand 2/monocyte chemoattractant protein-1 induction. J Immunol 184:4479-4487; 2010. [44]Zepp, J.; Wu, L.; Li, X. IL-17 receptor signaling and T helper 17-mediated autoimmune demyelinating disease. Trends Immunol 32:232-239; 2011. [45]Tucci, M.; Ciavarella, S.; Strippoli, S.; Dammacco, F.; Silvestris, F. Oversecretion of cytokines and chemokines in lupus nephritis is regulated by intraparenchymal dendritic cells: a review. Ann N Y Acad Sci 1173:449-457; 2009. [46]Akhtar, S.; Li, X.; Kovacs, E. J.; Gamelli, R. L.; Choudhry, M. A. Interleukin-18 Delays Neutrophil Apoptosis Following Alcohol Intoxication and Burn Injury. Mol Med 17:88-94; 2011. [47]Costantini, C.; Micheletti, A.; Calzetti, F.; Perbellini, O.; Pizzolo, G.; Cassatella, M. A. Neutrophil activation and survival are modulated by interaction with NK cells. Int Immunol 22:827-838; 2010. [48]Chang, J. T.; Segal, B. M.; Nakanishi, K.; Okamura, H.; Shevach, E. M. The costimulatory effect of IL-18 on the induction of antigen-specific IFN-gamma production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor beta2 subunit. Eur J Immunol 30:1113-1119; 2000. [49]He, Z.; Lu, L.; Altmann, C.; Hoke, T. S.; Ljubanovic, D.; Jani, A.; Dinarello, C. A.; Faubel, S.; Edelstein, C. L. Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury. Am J Physiol Renal Physiol 295:F1414-1421; 2008. [50]Liu, X.; Bao, C.; Hu, D. Elevated interleukin-18 and skewed Th1:Th2 immune response in lupus nephritis. Rheumatol Int. [51]Shui, H. A.; Ka, S. M.; Wu, W. M.; Lin, Y. F.; Hou, Y. C.; Su, L. C.; Chen, A. LPS-evoked IL-18 expression in mesangial cells plays a role in accelerating lupus nephritis. Rheumatology (Oxford) 46:1277-1284; 2007. [52]Faust, J.; Menke, J.; Kriegsmann, J.; Kelley, V. R.; Mayet, W. J.; Galle, P. R.; Schwarting, A. Correlation of renal tubular epithelial cell-derived interleukin-18 up-regulation with disease activity in MRL-Faslpr mice with autoimmune lupus nephritis. Arthritis Rheum 46:3083-3095; 2002. [53]Yoon, J. W.; Pahl, M. V.; Vaziri, N. D. Spontaneous leukocyte activation and oxygen-free radical generation in end-stage renal disease. Kidney Int 71:167-172; 2007. [54]Anrather, J.; Racchumi, G.; Iadecola, C. NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 281:5657-5667; 2006. [55]Kim, H. J.; Vaziri, N. D. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol 298:F662-671; 2010. [56]Modlinger, P. S.; Wilcox, C. S.; Aslam, S. Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin Nephrol 24:354-365; 2004. [57]Wang, G.; Pierangeli, S. S.; Papalardo, E.; Ansari, G. A.; Khan, M. F. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum 62:2064-2072; 2010. [58]Moroni, G.; Novembrino, C.; Quaglini, S.; De Giuseppe, R.; Gallelli, B.; Uva, V.; Montanari, V.; Messa, P.; Bamonti, F. Oxidative stress and homocysteine metabolism in patients with lupus nephritis. Lupus 19:65-72; 2010. [59]Tang, S.; Lui, S. L.; Lai, K. N. Pathogenesis of lupus nephritis: an update. Nephrology (Carlton) 10:174-179; 2005. [60]Nguyen, T.; Nioi, P.; Pickett, C. B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291-13295; 2009. [61]Yoh, K.; Itoh, K.; Enomoto, A.; Hirayama, A.; Yamaguchi, N.; Kobayashi, M.; Morito, N.; Koyama, A.; Yamamoto, M.; Takahashi, S. Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int 60:1343-1353; 2001. [62]Chen, X. L.; Dodd, G.; Thomas, S.; Zhang, X.; Wasserman, M. A.; Rovin, B. H.; Kunsch, C. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol 290:H1862-1870; 2006. [63]Rahman, I.; Biswas, S. K.; Kirkham, P. A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439-1452; 2006. [64]Thimmulappa, R. K.; Lee, H.; Rangasamy, T.; Reddy, S. P.; Yamamoto, M.; Kensler, T. W.; Biswal, S. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116:984-995; 2006. [65]Jin, W.; Wang, H.; Yan, W.; Xu, L.; Wang, X.; Zhao, X.; Yang, X.; Chen, G.; Ji, Y. Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators Inflamm 2008:725174; 2008. [66]Jin, W.; Wang, H.; Ji, Y.; Zhu, L.; Yan, W.; Qiao, L.; Yin, H. Genetic ablation of Nrf2 enhances susceptibility to acute lung injury after traumatic brain injury in mice. Exp Biol Med (Maywood) 234:181-189; 2009. [67]Sriram, N.; Kalayarasan, S.; Sudhandiran, G. Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keap1 signaling. Pulm Pharmacol Ther 22:221-236; 2009. [68]Chaaya, R.; Alfarano, C.; Guilbeau-Frugier, C.; Coatrieux, C.; Kesteman, A. S.; Parini, A.; Fares, N.; Gue, M.; Schanstra, J. P.; Bascands, J. L. Pargyline reduces renal damage associated with ischaemia-reperfusion and cyclosporin. Nephrol Dial Transplant 26:489-498; 2011. [69]Mukhopadhyay, P.; Rajesh, M.; Pan, H.; Patel, V.; Mukhopadhyay, B.; Batkai, S.; Gao, B.; Hasko, G.; Pacher, P. Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic Biol Med 48:457-467; 2010. [70]Ye, Z.; Ting, J. P. NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 20:3-9; 2008. [71]Schroder, K.; Tschopp, J. The inflammasomes. Cell 140:821-832. [72]Franchi, L.; Eigenbrod, T.; Munoz-Planillo, R.; Nunez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241-247; 2009. [73]Chen, M.; Wang, H.; Chen, W.; Meng, G. Regulation of adaptive immunity by the NLRP3 inflammasome. Int Immunopharmacol 11:549-554; 2011. [74]Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417-426; 2002. [75]Agostini, L.; Martinon, F.; Burns, K.; McDermott, M. F.; Hawkins, P. N.; Tschopp, J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319-325; 2004. [76]Pontillo, A.; Brandao, L.; Guimaraes, R.; Segat, L.; Araujo, J.; Crovella, S. Two SNPs in NLRP3 gene are involved in the predisposition to type-1 diabetes and celiac disease in a pediatric population from northeast Brazil. Autoimmunity 43:583-589; 2010. [77]Gris, D.; Ye, Z.; Iocca, H. A.; Wen, H.; Craven, R. R.; Gris, P.; Huang, M.; Schneider, M.; Miller, S. D.; Ting, J. P. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol 185:974-981; 2010. [78]Liu-Bryan, R. Intracellular innate immunity in gouty arthritis: role of NALP3 inflammasome. Immunol Cell Biol 88:20-23; 2010. [79]Vilaysane, A.; Chun, J.; Seamone, M. E.; Wang, W.; Chin, R.; Hirota, S.; Li, Y.; Clark, S. A.; Tschopp, J.; Trpkov, K.; Hemmelgarn, B. R.; Beck, P. L.; Muruve, D. A. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 21:1732-1744; 2010. [80]Li, R.; Sakwiwatkul, K.; Yutao, L.; Hu, S. Enhancement of the immune responses to vaccination against foot-and-mouth disease in mice by oral administration of an extract made from Rhizoma Atractylodis Macrocephalae (RAM). Vaccine 27:2094-2098; 2009. [81]Ha, H.; Ho, J.; Shin, S.; Kim, H.; Koo, S.; Kim, I. H.; Kim, C. Effects of Eucommiae Cortex on osteoblast-like cell proliferation and osteoclast inhibition. Arch Pharm Res 26:929-936; 2003. [82]Hu, S.; Cai, W.; Ye, J.; Qian, Z.; Sun, Z. Influence of medicinal herbs on phagocytosis by bovine neutrophils. Zentralbl Veterinarmed A 39:593-599; 1992. [83]Xu, H.; Xu, H. E. Analysis of trace elements in Chinese therapeutic foods and herbs. Am J Chin Med 37:625-638; 2009. [84]Lee, T. H.; Lee, C. K.; Tsou, W. L.; Liu, S. Y.; Kuo, M. T.; Wen, W. C. A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta Med 73:1412-1415; 2007. [85]Chang, J. M.; Lee, Y. R.; Hung, L. M.; Liu, S. Y.; Kuo, M. T.; Wen, W. C.; Chen, P. An Extract of Antrodia camphorata Mycelia Attenuates the Progression of Nephritis in Systemic Lupus Erythematosus-Prone NZB/W F1 Mice. Evid Based Complement Alternat Med; 2008. [86]Hseu, Y. C.; Wu, F. Y.; Wu, J. J.; Chen, J. Y.; Chang, W. H.; Lu, F. J.; Lai, Y. C.; Yang, H. L. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol 5:1914-1925; 2005. [87]Shen, Y. C.; Wang, Y. H.; Chou, Y. C.; Chen, C. F.; Lin, L. C.; Chang, T. T.; Tien, J. H.; Chou, C. J. Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Med 70:310-314; 2004. [88]Hseu, Y. C.; Chang, W. C.; Hseu, Y. T.; Lee, C. Y.; Yech, Y. J.; Chen, P. C.; Chen, J. Y.; Yang, H. L. Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci 71:469-482; 2002. [89]Yang, H. L.; Chen, C. S.; Chang, W. H.; Lu, F. J.; Lai, Y. C.; Chen, C. C.; Hseu, T. H.; Kuo, C. T.; Hseu, Y. C. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Lett 231:215-227; 2006. [90]Yang, S. S.; Wang, G. J.; Wang, S. Y.; Lin, Y. Y.; Kuo, Y. H.; Lee, T. H. New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata. Planta Med 75:512-516; 2009. [91]Chiang, P. C.; Lin, S. C.; Pan, S. L.; Kuo, C. H.; Tsai, I. L.; Kuo, M. T.; Wen, W. C.; Chen, P.; Guh, J. H. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem Pharmacol 79:162-171; 2010. [92]Frei, B.; Higdon, J. V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275S-3284S; 2003. [93]Singh, R.; Akhtar, N.; Haqqi, T. M. Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis. [corrected]. Life Sci 86:907-918; 2010. [94]Melgarejo, E.; Medina, M. A.; Sanchez-Jimenez, F.; Urdiales, J. L. Targeting of histamine producing cells by EGCG: a green dart against inflammation? J Physiol Biochem 66:265-270; 2010. [95]Ahmad, N.; Gupta, S.; Mukhtar, H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch Biochem Biophys 376:338-346; 2000. [96]Watson, J. L.; Vicario, M.; Wang, A.; Moreto, M.; McKay, D. M. Immune cell activation and subsequent epithelial dysfunction by Staphylococcus enterotoxin B is attenuated by the green tea polyphenol (-)-epigallocatechin gallate. Cell Immunol 237:7-16; 2005. [97]Yun, J. M.; Jialal, I.; Devaraj, S. Effects of epigallocatechin gallate on regulatory T cell number and function in obese v. lean volunteers. Br J Nutr 103:1771-1777; 2010. [98]Molino, C.; Fabbian, F.; Longhini, C. Clinical approach to lupus nephritis: recent advances. Eur J Intern Med 20:447-453; 2009. [99]Benseler, S. M.; Bargman, J. M.; Feldman, B. M.; Tyrrell, P. N.; Harvey, E.; Hebert, D.; Silverman, E. D. Acute renal failure in paediatric systemic lupus erythematosus: treatment and outcome. Rheumatology (Oxford) 48:176-182; 2009. [100]Flanc, R. S.; Roberts, M. A.; Strippoli, G. F.; Chadban, S. J.; Kerr, P. G.; Atkins, R. C. Treatment of diffuse proliferative lupus nephritis: a meta-analysis of randomized controlled trials. Am J Kidney Dis 43:197-208; 2004. [101]Illei, G. G.; Austin, H. A.; Crane, M.; Collins, L.; Gourley, M. F.; Yarboro, C. H.; Vaughan, E. M.; Kuroiwa, T.; Danning, C. L.; Steinberg, A. D.; Klippel, J. H.; Balow, J. E.; Boumpas, D. T. Combination therapy with pulse cyclophosphamide plus pulse methylprednisolone improves long-term renal outcome without adding toxicity in patients with lupus nephritis. Ann Intern Med 135:248-257; 2001. [102]Ka, S. M.; Kuo, Y. C.; Ho, P. J.; Tsai, P. Y.; Hsu, Y. J.; Tsai, W. J.; Lin, Y. L.; Shen, C. C.; Chen, A. (S)-armepavine from Chinese medicine improves experimental autoimmune crescentic glomerulonephritis. Rheumatology (Oxford) 49:1840-1851; 2010. [103]Behara, V. Y.; Whittier, W. L.; Korbet, S. M.; Schwartz, M. M.; Martens, M.; Lewis, E. J. Pathogenetic features of severe segmental lupus nephritis. Nephrol Dial Transplant 25:153-159; 2010. [104]Hill, G. S.; Delahousse, M.; Nochy, D.; Bariety, J. Class IV-S versus class IV-G lupus nephritis: clinical and morphologic differences suggesting different pathogenesis. Kidney Int 68:2288-2297; 2005. [105]Bagavant, H.; Fu, S. M. Pathogenesis of kidney disease in systemic lupus erythematosus. Curr Opin Rheumatol 21:489-494; 2009. [106]Deocharan, B.; Qing, X.; Lichauco, J.; Putterman, C. Alpha-actinin is a cross-reactive renal target for pathogenic anti-DNA antibodies. J Immunol 168:3072-3078; 2002. [107]Cunningham, M. A.; Huang, X. R.; Dowling, J. P.; Tipping, P. G.; Holdsworth, S. R. Prominence of cell-mediated immunity effectors in "pauci-immune" glomerulonephritis. J Am Soc Nephrol 10:499-506; 1999. [108]Kyttaris, V. C.; Tsokos, G. C. T lymphocytes in systemic lupus erythematosus: an update. Curr Opin Rheumatol 16:548-552; 2004. [109]Crispin, J. C.; Tsokos, G. C. IL-17 in systemic lupus erythematosus. J Biomed Biotechnol 2010:943254; 2010. [110]Dong, G.; Ye, R.; Shi, W.; Liu, S.; Wang, T.; Yang, X.; Yang, N.; Yu, X. IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients. Chin Med J (Engl) 116:543-548; 2003. [111]Mok, M. Y.; Wu, H. J.; Lo, Y.; Lau, C. S. The Relation of Interleukin 17 (IL-17) and IL-23 to Th1/Th2 Cytokines and Disease Activity in Systemic Lupus Erythematosus. J Rheumatol 37:2046-2052; 2010. [112]Shah, K.; Lee, W. W.; Lee, S. H.; Kim, S. H.; Kang, S. W.; Craft, J.; Kang, I. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther 12:R53; 2010. [113]Postol, E.; Meyer, A.; Cardillo, F.; de Alencar, R.; Pessina, D.; Nihei, J.; Mariano, M.; Mengel, J. Long-term administration of IgG2a anti-NK1.1 monoclonal antibody ameliorates lupus-like disease in NZB/W mice in spite of an early worsening induced by an IgG2a-dependent BAFF/BLyS production. Immunology 125:184-196; 2008. [114]Kretzler, M.; Koeppen-Hagemann, I.; Kriz, W. Podocyte damage is a critical step in the development of glomerulosclerosis in the uninephrectomised-desoxycorticosterone hypertensive rat. Virchows Arch 425:181-193; 1994. [115]Kinter, M.; Wolstenholme, J. T.; Thornhill, B. A.; Newton, E. A.; McCormick, M. L.; Chevalier, R. L. Unilateral ureteral obstruction impairs renal antioxidant enzyme activation during sodium depletion. Kidney Int 55:1327-1334; 1999. [116]Smeets, B.; Te Loeke, N. A.; Dijkman, H. B.; Steenbergen, M. L.; Lensen, J. F.; Begieneman, M. P.; van Kuppevelt, T. H.; Wetzels, J. F.; Steenbergen, E. J. The parietal epithelial cell: a key player in the pathogenesis of focal segmental glomerulosclerosis in Thy-1.1 transgenic mice. J Am Soc Nephrol 15:928-939; 2004. [117]Haas, K. M.; Watanabe, R.; Matsushita, T.; Nakashima, H.; Ishiura, N.; Okochi, H.; Fujimoto, M.; Tedder, T. F. Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice. J Immunol 184:4789-4800; 2010. [118]Hseu, Y. C.; Huang, H. C.; Hsiang, C. Y. Antrodia camphorata suppresses lipopolysaccharide-induced nuclear factor-kappaB activation in transgenic mice evaluated by bioluminescence imaging. Food Chem Toxicol 48:2319-2325; 2010. [119]Hong Byun, E.; Fujimura, Y.; Yamada, K.; Tachibana, H. TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. J Immunol 185:33-45; 2010. [120]Kaspar, J. W.; Niture, S. K.; Jaiswal, A. K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304-1309; 2009. [121]Jiang, T.; Huang, Z.; Lin, Y.; Zhang, Z.; Fang, D.; Zhang, D. D. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 59:850-860; 2010. [122]Chan, K.; Han, X. D.; Kan, Y. W. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci U S A 98:4611-4616; 2001. [123]Tipping, P. G.; Holdsworth, S. R. T cells in crescentic glomerulonephritis. J Am Soc Nephrol 17:1253-1263; 2006. [124]Martin-Fontecha, A.; Thomsen, L. L.; Brett, S.; Gerard, C.; Lipp, M.; Lanzavecchia, A.; Sallusto, F. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260-1265; 2004. [125]Goto, M.; Tanimoto, K.; Horiuchi, Y. Natural cell mediated cytotoxicity in systemic lupus erythematosus: suppression by antilymphocyte antibody. Arthritis Rheum 23:1274-1281; 1980. [126]Hoffman, T. Natural killer funciton in systemic lupus erythematosus. Arthritis Rheum 23:30-35; 1980. [127]Shi, F. D.; Wang, H. B.; Li, H.; Hong, S.; Taniguchi, M.; Link, H.; Van Kaer, L.; Ljunggren, H. G. Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol 1:245-251; 2000. [128]Pae, M.; Ren, Z.; Meydani, M.; Shang, F.; Meydani, S. N.; Wu, D. Epigallocatechin-3-gallate directly suppresses T cell proliferation through impaired IL-2 utilization and cell cycle progression. J Nutr 140:1509-1515; 2010. [129]Gillespie, K.; Kodani, I.; Dickinson, D. P.; Ogbureke, K. U.; Camba, A. M.; Wu, M.; Looney, S.; Chu, T. C.; Qin, H.; Bisch, F.; Sharawy, M.; Schuster, G. S.; Hsu, S. D. Effects of oral consumption of the green tea polyphenol EGCG in a murine model for human Sjogren's syndrome, an autoimmune disease. Life Sci 83:581-588; 2008. [130]Ka, S. M.; Cheng, C. W.; Shui, H. A.; Wu, W. M.; Chang, D. M.; Lin, Y. C.; Chen, A. Mesangial cells of lupus-prone mice are sensitive to chemokine production. Arthritis Res Ther 9:R67; 2007. [131]Kim, K. A.; Lee, J. S.; Park, H. J.; Kim, J. W.; Kim, C. J.; Shim, I. S.; Kim, N. J.; Han, S. M.; Lim, S. Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes. Life Sci 74:2769-2779; 2004. [132]Gautam, R.; Jachak, S. M. Recent developments in anti-inflammatory natural products. Med Res Rev 29:767-820; 2009. [133]Giner-Larza, E. M.; Manez, S.; Recio, M. C.; Giner, R. M.; Prieto, J. M.; Cerda-Nicolas, M.; Rios, J. L. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur J Pharmacol 428:137-143; 2001. [134]Subbaramaiah, K.; Michaluart, P.; Sporn, M. B.; Dannenberg, A. J. Ursolic acid inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Cancer Res 60:2399-2404; 2000. [135]Cruz, C. M.; Rinna, A.; Forman, H. J.; Ventura, A. L.; Persechini, P. M.; Ojcius, D. M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282:2871-2879; 2007. [136]Gross, O.; Poeck, H.; Bscheider, M.; Dostert, C.; Hannesschlager, N.; Endres, S.; Hartmann, G.; Tardivel, A.; Schweighoffer, E.; Tybulewicz, V.; Mocsai, A.; Tschopp, J.; Ruland, J. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433-436; 2009. [137]Dostert, C.; Petrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B. T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674-677; 2008. [138]Cassel, S. L.; Eisenbarth, S. C.; Iyer, S. S.; Sadler, J. J.; Colegio, O. R.; Tephly, L. A.; Carter, A. B.; Rothman, P. B.; Flavell, R. A.; Sutterwala, F. S. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A 105:9035-9040; 2008. [139]Bauernfeind, F. G.; Horvath, G.; Stutz, A.; Alnemri, E. S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B. G.; Fitzgerald, K. A.; Hornung, V.; Latz, E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787-791; 2009. [140]Yamabe, N.; Yokozawa, T.; Oya, T.; Kim, M. Therapeutic potential of (-)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. J Pharmacol Exp Ther 319:228-236; 2006. [141]Syed, D. N.; Afaq, F.; Kweon, M. H.; Hadi, N.; Bhatia, N.; Spiegelman, V. S.; Mukhtar, H. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene 26:673-682; 2007. [142]Zhang, Z. M.; Yang, X. Y.; Yuan, J. H.; Sun, Z. Y.; Li, Y. Q. Modulation of NRF2 and UGT1A expression by epigallocatechin-3-gallate in colon cancer cells and BALB/c mice. Chin Med J (Engl) 122:1660-1665; 2009. [143]Romeo, L.; Intrieri, M.; D'Agata, V.; Mangano, N. G.; Oriani, G.; Ontario, M. L.; Scapagnini, G. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J Am Coll Nutr 28 Suppl:492S-499S; 2009. [144]Sahin, K.; Tuzcu, M.; Gencoglu, H.; Dogukan, A.; Timurkan, M.; Sahin, N.; Aslan, A.; Kucuk, O. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Life Sci 87:240-245; 2010. [145]Zhu, H.; Itoh, K.; Yamamoto, M.; Zweier, J. L.; Li, Y. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579:3029-3036; 2005. [146]Zhu, H.; Zhang, L.; Itoh, K.; Yamamoto, M.; Ross, D.; Trush, M. A.; Zweier, J. L.; Li, Y. Nrf2 controls bone marrow stromal cell susceptibility to oxidative and electrophilic stress. Free Radic Biol Med 41:132-143; 2006. [147]Zhu, H.; Jia, Z.; Zhang, L.; Yamamoto, M.; Misra, H. P.; Trush, M. A.; Li, Y. Antioxidants and phase 2 enzymes in macrophages: regulation by Nrf2 signaling and protection against oxidative and electrophilic stress. Exp Biol Med (Maywood) 233:463-474; 2008. [148]Brigelius-Flohe, R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951-965; 1999. [149]Vernet, P.; Rock, E.; Mazur, A.; Rayssiguier, Y.; Dufaure, J. P.; Drevet, J. R. Selenium-independent epididymis-restricted glutathione peroxidase 5 protein (GPX5) can back up failing Se-dependent GPXs in mice subjected to selenium deficiency. Mol Reprod Dev 54:362-370; 1999. [150]Banning, A.; Deubel, S.; Kluth, D.; Zhou, Z.; Brigelius-Flohe, R. The GI-GPx gene is a target for Nrf2. Mol Cell Biol 25:4914-4923; 2005. [151]Ichikawa, I.; Kiyama, S.; Yoshioka, T. Renal antioxidant enzymes: their regulation and function. Kidney Int 45:1-9; 1994. [152]Kawamura, T.; Yoshioka, T.; Bills, T.; Fogo, A.; Ichikawa, I. Glucocorticoid activates glomerular antioxidant enzymes and protects glomeruli from oxidant injuries. Kidney Int 40:291-301; 1991. [153]Yoshioka, T.; Homma, T.; Meyrick, B.; Takeda, M.; Moore-Jarrett, T.; Kon, V.; Ichikawa, I. Oxidants induce transcriptional activation of manganese superoxide dismutase in glomerular cells. Kidney Int 46:405-413; 1994.
|