中文部份:
王順吉、吳怡興(2008)。模糊色彩量化區域特徵選取之彩色影像檢索方法。中正嶺學報, 37(1), 47-56。
田方正、洪贊原、蔡全益、田方治(2006)。運用雙影像視覺與主要因素分析(PCA)於人臉辨識。品質學報, 13(1),11-19。李奇奎(2007)。植基於隱匿式馬可夫之影像分類方法研究-以軍事圖資為例。未出版碩士論文,國防大學管理學院,台北市。李建興、林應璞、游凱倫 (2009)。即時人臉偵測與辨識。Journal of Technology, 24(2),131-141.李建興、游凱倫、林應璞(2010)。即時動態車牌辨識。Journal of Technology, 25(2),151-165.
周鵬程(2007)。遺傳演算法原理與應用-活用Matlab。台北市:全華圖書公司。
林世峻、莊智瑋、何世華、林昭遠(2008)。植生指標對影像分類準確度影響之研究。水土保持學報, 40(3), 315-328。吳易達、湯燦泰、石明于、周正全、高肇宏、黃鐘賢(2009)。基於階層式架構的車色分類系統。ICL TECHNICAL JOURNAL, 128,44-49.洪永祥(2009)。應用IG 特徵選取改善SVM 多類別分類績效。2009第17屆模糊理論及其應用研討會(頁132-137)。高雄:高雄大學。
陳永航(2010)。半監督式支持向量機應用於人臉辨識。未出版碩士論文, 國立成功大學,台南市。陳鴻興、陳君彥(2010)。基礎色彩再現工程。台北市:全華圖書公司。
張光佑、謝友振、郭伯臣、張峻豪(2005)。Feature Selection for Support Vector Machine in Hyperspectral Image Data。 2005年台灣地理資訊學會年會暨學術研討會論文集。
張傳育、王宏仁、李綺芳(2007)。植基於主成份分析與支援向量機的影像語意內容分析系統。2007全國計算機會議(頁172-177)。台中:亞洲大學。
張財榮、劉正凱、黃烱育(2009)。基於支援向量機之車牌辨識。2009第17屆模糊理論及其應用研討會(頁274-279)。高雄:高雄大學。
許晉嘉、雷祖強、周天穎 (2005)。支援向量機理論中核函數性質之研究-以高解析度衛星影像為例。2005 年台灣地理資訊學會年會暨學術研討會論文集。
黃宇睿(2006)。以細胞學影像分析系統與支援向量機為基礎的子宮頸抹片細胞影像之研究。未出版碩士論文,朝陽科技大學,台中縣。曾秋榮(2007)。多解析語意軍事圖像檢索系統設計。未出版碩士論文,國防大學管理學院,台北市。曾淑峰、江俊豪(2008)。GA-SVM 組合式信用風險財務危機模型之研究。台灣金融財務季刊,9(1),1-25。曾逸鴻、黃吉緯(2009)。整合多搜尋方法之影像資料庫檢索系統。Journal of Science and Engineering Technology, 5(3), 1-12.
雷祖強、周天穎、萬絢、楊龍士、許晉嘉(2007)。空間特徵分類器支援向量機之研究。Journal of Photogrammetry and Remote Sensing, 12(2), 145-163.劉嘉倫(2006)。應用支援向量機於人臉偵測之研究。未出版碩士論文,世新大學,台北市。廖瑋星(2006)。應用支援向量機於人臉偵測之研究。未出版碩士論文,台灣大學,台北市。
戴文曦(2007)。植基於類神經網路之影像分類方法研究:以軍事圖資為例。未出版碩士論文,國防大學管理學院,台北市。缪紹綱(2008)。數位影像處理。台北市:臺灣培生教育出版。
藍于絢(2008)。植基於多種監督式類神經網路之軍事影像分類研究。未出版碩士論文,國防大學管理學院,台北市。英文部份:
Arivazhagan, S., & Ganesan, L. (2003). Texture segmentation using wavelet transform. Pattern Recognition Letters, 24(16), 3197-3203.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Paper presented at the Proceedings of the fifth annual workshop on Computational learning theory, 144-152.
Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167.
Chang, C.-C., & Lin, C.-J. (2001). LIBSVM : a library for support vector machines. from Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Dimov, D., Zlateva, N., & Marinov, A. (2008). CBIR Approach to Face Recognition. Paper presented at the A&I'08 Conf.
Duan, K., Keerthi, S. S., & Poo, A. N. (2003). Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 51, 41-59.
Fletcher, R. (1981). Practical Methods of Optimization: Vol. 2: Constrained Optimization. JOHN WILEY & SONS, INC., ONE WILEY DR., SOMERSET, N. J. 08873, 1981, 224.
Gunn, S. (1998). Support vector machines for classification and regression. ISIS technical report, 14, 19-22.
Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, 3(6), 610-621.
Hsu, C., Chang, C., & Lin, C. (2003). A practical guide to support vector classification: Citeseer.
Hsu, C., & Lin, C. (2002). A comparison of methods for multiclass support vector machines. IEEE transactions on Neural Networks, 13(2), 415-425.
Kalantari, K. R., Shirgahi, H., & Ranjbar, A. (2011). Symbolic Image Indexing and Retrieval by Spatial Similarity. American Journal of Scientific Research(13), 99-112.
Kebapci, H., Yanikoglu, B., & Unal, G. (2010). Plant image retrieval using color, shape and texture features. The Computer Journal, 1-16.
Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674-693.
Mazzoni, D., Garay, M. J., Davies, R., & Nelson, D. (2007). An operational MISR pixel classifier using support vector machines. Remote sensing of environment, 107(1-2), 149-158.
Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778-1790.
Miranda, F., MacDonald, J., & Carr, J. (1992). Application of the semivariogram textural classifier (STC) for vegetation discrimination using SIR-B data of Borneo. International Journal of Remote Sensing, 13(12), 2349-2354.
Nemmour, H., & Chibani, Y. (2006). Multiple support vector machines for land cover change detection: An application for mapping urban extensions. ISPRS Journal of Photogrammetry and Remote Sensing, 61(2), 125-133.
Pal, M., & Mather, P. (2008). Support vector classifiers for land cover classification. International Journal of Remote Sensing, 29(10), 3043-3049.
Platt, J., Cristianini, N., & Shawe-Taylor, J. (2000). Large margin DAGs for multiclass classification. Advances in neural information processing systems, 12(3), 547-553.
Scholkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., & Williamson, R. (2001). Estimating the support of a high-dimensional distribution. Neural computation, 13(7), 1443-1471.
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological), 111-147.
Su, J.-H., Huang, W.-J., Yu, P. S., & Tseng, V. S. (2011). Efficient Relevance Feedback for Content-Based Image Retrieval by Mining User Navigation Patterns. [Article]. IEEE Transactions on Knowledge & Data Engineering, 23(3), 360-372.
Sun, A., Naing, M., Lim, E., & Lam, W. (2010). Using support vector machines for terrorism information extraction. Intelligence and Security Informatics, 959-959.
Tso, B., & Mather, P. (2009). Classification methods for remotely sensed data: CRC.
Tso, B., & Olsen, R. C. (2005). Combining spectral and spatial information into hidden Markov models for unsupervised image classification. International Journal of Remote Sensing, 26(10), 2113-2134.
Vapnik, V. (1998). Statistical Learning Theory New York. NY: Wiley.
Vapnik, V., & Chapelle, O. (2000). Bounds on error expectation for support vector machines. Neural computation, 12(9), 2013-2036.
Waring, C. A., & Liu, X. (2005). Face detection using spectral histograms and SVMs. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 35(3), 467-476.
Watanachaturaporn, P., Arora, M. K., & Varshney, P. K. (2008). Multisource classification using support vector machines: An empirical comparison with decision tree and neural network classifiers. Photogrammetric Engineering and Remote Sensing, 74(2), 239-246.
Wunsch, P., & Laine, A. F. (1995). Wavelet descriptors for multiresolution recognition of handprinted characters. Pattern recognition, 28(8), 1237-1249.
Xindong, W., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., et al. (2010). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37.
Yao, C. C., & Yu, P. T. (2006). Fuzzy regression based on asymmetric support vector machines. Applied Mathematics and Computation, 182(1), 175-193.
Yim, C., Klarquist, W., & Bovik, A. (1994). Multiresolution feature extraction based on multifrequencydecomposition, 3, 2384-2389.
Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern recognition, 37(1), 1-19.
Zhu, H., Yang, X., & Luo, Y. (2009). Classification of urban remote sensing image based on support vector machines. Paper presented at the 2009 17th International Conference on Geoinformatics., 1-6.