|
References [1] Bezdek, J.C., 1974. Cluster Validity with Fuzzy Sets. J. Cybernetics 3, 58-73. [2] Bezdek, J.C., 1981. Pattern Reccognition with Fuzzy Objectiv Function Algorithm.Plenum Press. [3] Chen, C. H., 2002.Generalized Association Plots: Information Visualization via Iteratively Generated Correlation Matrices. Statistica Sinica 12, 7-29. [4] Chen, T.L., Shiu, S.Y., 2007. A new clustering algorithm based on self-updating process. Proceedings of the American Statistical Association. [5] Chen, T.L., 2009. Image segmentation by SUP clustering algorithm. Section on Statistical Learning and Data Mining-JSM 2009. [6] Davies, D.L., D.W. Bouldin, D.W., 1979. A Cluster Separation Measure. IEEE Trans. Pattern Analysis and Machine Intelligence 1, 224-227. [7] Duda, R.O., Hart, P.E., 1973. Pattern Classification and Scene Analysis, Wiley,New York. [8] Forgy, E., 1965. Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21 768-780. [9] Jain, A.K., Murty, Flynn, P.J., 1999. Data clustering: a review. ACM Computing Surveys 31, 264-323. [10] Hathaway, R., Bezdek, J., Hu, Y., 2000. Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Transactions on Fuzzy Systems 8, 576-582. [11] Hansen, P., Mladenoviae, N., 2001. J-means: a new local search heuristic for minimum sum of squares clustering. Pattern Recognition 34, 405-413. [12] Hoeppner, F., Klawonn, F., Kruse, R., 1999. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis, and Image Recognition, Wiley, New York. [13] Hung, M., Yang, D., 2001. An efficient fuzzy c-means clustering algorithm. Proceedings of IEEE International Conference on Data Mining 225-232. [14] Huang, Z., 1998. Extensions to the K-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2, 283-304. [15] Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.,2000. An efficient K-means clustering algorithm: analysis and implementation.IEEE Transactions in Pattern Analysis and Machine Intelligence 24, 881-892. [16] Kolen, J., Hutcheson, T., 2002. Reducing the time complexity of the fuzzy cmeans algorithm. IEEE Transactions on Fuzzy Systems 10, 263-267. [17] McQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 291-297 [18] McQuitty, L.L., 1968. Multiple clusters, types, and dimensions from iterative intercolumnar correlational analysis. Multivariate Behavioral Research 3, 465-477. [19] Milligan, G.W. and Cooper, M.C., 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159-179. [20] Pal, N.R., Bezdek, J.C., 1995. On Cluster Validity for Fuzzy c-Means Model.IEEE Trans. Fuzzy Systems 1, 370-379. [21] Selim, S.Z., Alsultan, K., 1991. A simulated annealing algorithm for the clustering problem. Pattern Recognition 24, 1003-1008. [22] Su, M., Chou, C., 2001. A modified version of the K-means algorithm with a distance based on cluster symmetry, IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 674-680. [23] Tibshirani, R., Walther, G., Hastie, T., 2001. Estimating the number of clusters in a data set via the gap statistic. J. Roy. Statist. Soc. B 632, 411-423. [24] Tseng, G.C., Wong, W.H., 2005. Tight clustering: a resampling-based approach for identifying stable and tight patterns in data. Biometrics 61, 10-16. [25] Xie, X.L., Beni, G., 1991. A Validity Measure for Fuzzy Clustering. IEEE Trans.Pattern Analysis and Machine Intelligence 13, 841-847. 1 [26] Xu, R., Wunsch, D., 2005. Survey of clustering algorithms. IEEE Transactions on Neural Networks 16, 645-678.
|