(3.235.245.219) 您好!臺灣時間:2021/05/10 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:郭嘉騏
研究生(外文):Chia-Chi Kuo
論文名稱:異相觸媒應用於油脂轉酯化之探討
論文名稱(外文):The study of applying the heterogeneous catalysts on oil transesterification
指導教授:吳友平
指導教授(外文):Yo-ping Greg Wu
口試委員:劉俊良謝承佑
口試委員(外文):Liu, Jung-LiangCheng-Yu Hsieh
口試日期:2011-07-13
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:93
中文關鍵詞:生質柴油異相觸媒轉爐石轉酯化酯含量
外文關鍵詞:Biodieselheterogeneous catalystbasic oxygen furnace slag (BOF slag)transesterificationfatty acid methyl esters
相關次數:
  • 被引用被引用:3
  • 點閱點閱:273
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討使用轉爐石與其它異相觸媒,如氧化鎂(MgO)、氧化鋁(Al2O3)及氧化鋅(ZnO),進行大豆油與甲醇的轉酯化反應,比較不同反應參數下各種異相觸媒所製出的油品酯含量與物化性質分析。並同時對各種觸媒進行X光繞射分析儀(X-ray Diffraction, XRD) 以及掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析,探討於反應前後其表面結構及分子之結晶結構變化。
結果發現隨著添加的異相觸媒愈多,反應時間愈長,反應溫度愈高時,其酯含量也會隨之增加,使用轉爐石、氧化鎂與氧化鋅作為異相觸媒皆可達到較高的酯含量,其中以轉爐石的效果最佳,而氧化鋁在200 oC的反應溫度下,其酯含量依然很低,因此氧化鋁此為四種觸媒中較不適用於轉酯化反應的異相觸媒。

This study is using four kinds of heterogeneous catalysts, basic oxygen furnace slag (BOF slag), magnesium oxide (MgO), aluminium oxide (Al2O3), and zinc oxide (ZnO), to investigate their effects on transesterification processes. The heterogeneous catalysts were applying on the transesterification of soybean oil with methanol for biodiesel production. The experimental conditions include reaction temperature, reaction time, catalyst amount, and types of catalysts. This study also employed with Brunauer Emmett Teller (BET), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM), to analyze the surface structure and crystallographic structure of heterogeneous catalysts prior and after the reactions.
The results show that the processes have better conversion efficiency with longer reaction time, higher reaction temperature, and higher catalyst amount. Among this study, 200 oC reaction temperature, and 2 hour reaction time with 4 wt% BOF slag is the optimum reaction condition for transesterification conversion, and the fatty acid methyl esters (FAME) reaches 95 %. Among the four types of catalysts, aluminum oxide gave a lowest transestrification conversion.

中 文 摘 要......................................................................................I
英 文 摘 要..................................................................................... II
誌 謝...........................................................................................IV
目 錄.......................................................................................... V
表 目 錄....................................................................................... VIII
圖 目 錄........................................................................................IX
第一章 前言......................................................................................... 1
1.1 研究動機........................................................................................ 1
1.2 研究目的........................................................................................ 2
第二章 文獻回顧...................................................................................... 3
2.1 生質柴油發展與應用............................................................................... 3
2.2 生質柴油之原料................................................................................... 7
2.3 生質柴油的製備方法............................................................................... 9
2.3.1 鹼催化法..................................................................................... 11
2.3.2 酸催化法..................................................................................... 12
2.3.3 酵素法....................................................................................... 13
2.3.4 超臨界流體法.................................................................................. 13
2.3.5 異相觸媒法.................................................................................... 13
2.4 生質柴油的基本物化性質........................................................................... 14
2.4.1 酸價......................................................................................... 15
2.4.2 碘價......................................................................................... 15
2.4.3 閃點......................................................................................... 16
2.4.4 動力黏度...................................................................................... 16
2.4.5 密度與熱值.................................................................................... 16
2.5 轉爐石.......................................................................................... 17
2.5.1 轉爐石生產過程................................................................................. 17
2.5.2 轉爐石組成及應用............................................................................... 18
第三章 實驗方法...................................................................................... 19
3.1 觸媒特性分析.................................................................................... 19
3.1.1 觸媒的準備.................................................................................... 19
3.1.2 比表面積孔洞測定儀(Brunauer Emmett Teller, BET) ............................................... 19
3.1.3 X 光繞射分析儀(X-ray Diffraction, XRD)........................................................ 19
3.1.4 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) ........................................... 20
3.2 異相觸媒轉製生質柴油............................................................................. 20
3.2.1 批次式固體觸媒轉酯化........................................................................... 20
3.3 生質柴油的物化特性分析........................................................................... 22
3.3.1 總脂肪酸甲酯分析.............................................................................. 22
3.3.2 酸價(Acid value)............................................................................. 22
3.3.3 碘價(Iodine value) .......................................................................... 25
3.3.4 動力黏度(Kinematics viscosity)............................................................... 27
3.3.5 密度(Density) ............................................................................... 28
3.3.6 熱值(Heating value) ......................................................................... 28
第四章 結果與討論.................................................................................... 30
4.1 比表面積孔洞測定儀(Brunauer Emmett Teller, BET) ................................................. 30
4.2 X 光繞射分析儀(X-ray Diffraction, XRD).......................................................... 31
4.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) ............................................. 38
4.4 生質柴油的物化特性分析............................................................................ 44
4.4.1 生質柴油之酯含量............................................................................... 44
4.4.2 生質柴油基本物化性質分析........................................................................ 61
第五章 結論......................................................................................... 65
第六章 參考文獻..................................................................................... 67
附錄一 實驗藥品..................................................................................... 78
附錄二 實驗儀器..................................................................................... 80
1. M.A. Fazal, A.S.M.A. Haseeb, H.H. Masjuki, Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability, Renewable and Sustainable Energy Reviews 15 (2011) 1314–1324.
2. Edward Crabbe, Cirilo Nolasco-Hipolito, Genta Kobayashi, Kenji Sonomoto,Ayaaki Ishizaki, Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties, Process Biochemistry 37 (2001) 65–71.
3. J.,Hawkins C.S.and Hugo F.J.C.,Tractor engine performance on sunflower oil fuel,J.Agric.Eng., Fuel 30(1984)29.
4. R. Baños, F. Manzano-Agugliaro, F.G. Montoya, C. Gil, A. Alcayde and J. Gómez, Optimization methods applied to renewable and sustainable energy: A review.
5. A.K. Akella, M.P. Sharma, R.P. Saini, Optimum utilization of renewable energy sources in a remote area, Renewable and Sustainable Energy Reviews 11 (2007) 894–908.
6. Sumiani Yusoff, Renewable energy from palm oil – innovation on effective utilization of waste, Journal of Cleaner Production 14 (2006) 87–93.
7. Dharmendra Kumar, Gajendra Kumar, Poonam, C.P. Singh, Ultrasonic-assisted transesterification of Jatropha curcus oil using solid catalyst, Na/SiO2, Ultrasonics Sonochemistry 17 (2010) 839–844.
8. Falin Chen, Shyi-Min Lu, Eric Wang, Kuo-Tung Tseng, Renewable energy in Taiwan, Renewable and Sustainable Energy Reviews 14 (2010) 2029–2038.
9. Zafer Utlu, Mevlüt Süreyya Koçak, The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions Renewable Energy 33 (2008) 1936–1941.
10. Nestor U. Soriano Jr., Veronica P. Migo, Masatoshi Matsumura, Ozonized vegetable oil as pour point depressant for neat biodiesel, Fuel 85 (2006) 25–31.
11. S. Mekhilef, S. Siga, R. Saidur, A review on palm oil biodiesel as a source of renewable fuel, Renewable and Sustainable Energy Reviews 15 (2011) 1937–1949
12. 楊奇峰,吳佩學,施英隆,利用廢油脂生產生質柴油的影響參數探討,中國機械工程學會第二十七屆全國學術研討會論文集,Dec 10-11,2010,台北,台灣。
13. Donghui Song, Jingjuan Fu, and Dingji Shi, Exploitation of Oil-bearing Microalgae for Biodiesel, Chinese Journal of Biotechnology, 2008, 24(3): 341–348
14. 吳明修,以廢食用油所提煉之生質柴油的油品與引擎特性研究,碩士論文,國立台灣海洋大學,2004。
15. Jin-Suk Lee, Shiro Saka, Biodiesel production by heterogeneous catalysts and supercritical technologies, Bioresource Technology 101 (2010) 7191–7200
16. Tsutomu Sakai, Ayato Kawashima, Tetsuya Koshikawa, Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts, Bioresource Technology 100 (2009) 3268–3276
17. Ghassan Tashtoush, Mohamad I. Al-Widyan, Ali O. Al-Shyoukh, Combustion performance and emissions of ethyl ester of a waste vegetable oil in a water-cooled furnace, Applied Thermal Engineering 23 (2003) 285–293
18. 聯合國氣候變化框架公約-京都議定書http://www.tri.org.tw/unfccc/download/kp_c.pdf
19. 顧洋,聯合國氣候變化綱要公約第16次締約國大會心得與感想,能源報導,第5~7頁,2011年。
20. 鄭佾展,坎昆氣候變遷大會之觀察與分享,環境品質文教基金會,2010年。
21. 陳維新,能源概論,高立圖書,台北,第1-13~1-19頁,2009。
22. 陳志威,將廢油變黃金-淺談生化柴油的發展與應用,生物資源生物技術,第三卷第三期,第10-16頁,2001。
23. Bhupendra Singh Chauhan, Naveen Kumar, Yong Du Jun, Kum Bae Lee, Performance and emission study of preheated Jatropha oil on medium capacity diesel engine, Energy 35 (2010) 2484–2492.
24. Thomas RW, Maurin BO, Identification of chemical change occurring during thetransient injection of selected vegetable oils, SAE-paper; 930933; 1993. p. 201-10.
25. Biodiesel Handling and Use Guide, National Renewable Energy Laboratory, NREL/TP-540-43672, 4th edition, Revised December 2009.
26. 趙國評,楊素幸,淺談生質能,林業研究專訊 Vol.14 No.3 第10~13頁 2007年。
27. 陳維新,能源概論,高立圖書,台北,第1-38~1-39頁,2009。
28. 林忠亮,方柄勳,黃冬梨,李政誠,吳奇生,生質柴油之製程發展與應用,石油季刊,第四十二卷,第一期,第49~59頁,2006。
29. Environmental Protection Agency. Draft Technical Report, A Comprehensive Analysis of Biodiesel Impacts on, Exhaust Emissions, EPA420-P-02-001, 2002, www.epa.gov/OMS/models/biodsl.htm.
30. Canadian Bioenergy Association, Benefits of Bioenergy to Canada, http://www.canbio.ca/publications.php
31. Pinto A.C., Guarieiro L.N and Rezende M.J.C., Biodiesel : an overview, Journal of the Brazilian Chemical Society, 16(2005) 1313-1330.
32. 呂紹裕,葉珍瑜,吳友平,林雅芬,儲存時間對植物油轉製生質柴油之引擎排氣性質研究,中華民國燃燒學會學術研討會,March 20,2010,台南,台灣。
33. Ayhan Demirbas, Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods, Progress in Energy and Combustion Science 31 (2005) 466–487.
34. S.P. Singh, Dipti Singh Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review, Renewable and Sustainable Energy Reviews 14 (2010) 200–216
35. Michael J. Haas, Andrew J. McAloon, Winnie C. Yee, Thomas A. Foglia, A process model to estimate biodiesel production costs, Bioresource Technology 97 (2006) 671–678.
36. Ayhan Demirbas, Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey, Energy Conversion and Management 44 (2003) 2093–2109.
37. L. Bournay, D. Casanave, B. Delfort, G. Hillion, J. A. Chodorge, New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants, Catalysis Today 106 (2005) 190–192.
38. 劉文宗,生質柴油發展與工業化設計,永續產業發展雙月刊第35期,經濟部工業局,台北,第32~39頁,2007。
39. Basu H.N., Norris M.E., ”Process for production of esters for use as a diesel fuel substitute using a non-alkaline cat-alyst”, US Patent 5525126, (1996)
40. Wen-Yong Lou, Min-Hua Zong, Zhang-Qun Duan, Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts, Bioresource Technology 99 (2008) 8752–8758.
41. 林忠亮,方柄勳,黃冬梨,吳奇生,「大豆油生產生質柴油之生物轉酯化技術探討」,石油季刊,第四十一卷,第四期,第51-58 頁,(2005)。
42. Freedman B. and Bagby M.O., Predicting cetane number of n-alcohols and methyl esters from their physical properties, JAOCS, 67 565-571 (1990)
43. Jon Van Gerpen, Biodiesel processing and production, Fuel Processing Technology 86 (2005) 1097– 1107.
44. Bernard Freedman, Royden O. Butterfield, Evereff H. Pryde, Transesterification Kinetics of Soybean Oil, JAOCS, Vol 63, no.10 (1986).
45. Hanny Johanes Berchmans, Shizuko Hirata, Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids, Bioresource Technology 99 (2008) 1716–1721.
46. Hideki Fukuda, Akihiko Kondo, Hideo Noda, Biodiesel fuel production by transesterification of oils, Journal of Bioscience and Bioengineering Vol.92, No.5, 405–416. 2001.
47. 陳聖傑,以Rhizopus oryzae 最適化生產轉酯化酶之研究,碩士論文,國 立雲林科技大學化學工程與材料工程系,2008。
48. 陳文章,賴聖豐,李旻倉,林語沛,張庭佳,林忠亮,以固定化Rhizopus oryzae BD5 菌體進行大豆油轉酯化生產生質柴油之最適化研究,石油季刊,第四十六卷,第一期,第87~93頁,2010。
49. 范巧蕾,以超臨界流體技術製備生質柴油的油品性質和引擎特性研究,碩士論文,國立臺灣海洋大學輪機工程學系,2007。
50. Meher, L.C., Vidya Sagar, D., Naik, S.N., 2006. Technical aspects of biodieselproduction by transesterification – a review. Renew. Sustain. Energy Rev. 10, 248–268.
51. Demirbas, A., 2007. Biodiesel from sunflower oil in supercritical methanol withcalcium oxide. Energy Convers. Manage. 48, 937–941.
52. Sung Jin Yoo, Hong-shik Lee, Bambang Veriansyah, Jaehoon Kim, Jae-Duck Kim, Youn-Woo Lee, Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts, Bioresource Technology 101 (2010) 8686–8689.
53. Ayhan Demirbas, Biodiesel from sunflower oil in supercritical methanol with calcium oxide, Energy Conversion and Management 48 (2007) 937–941.
54. Lianyuan Wang, Jichu Yang, Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol, Fuel 86 (2007) 328–333.
55. Ayato Kawashima, Koh Matsubara, Katsuhisa Honda, Development of heterogeneous base catalysts for biodiesel production, Bioresource Technology 99 (2008) 3439–3443.
56. Martino Di Serio, Riccardo Tesser, Lu Pengmei, Heterogeneous Catalysts for Biodiesel Production, Academy of Science, China,2007.
57. Jaturong Jitputti, Boonyarach Kitiyanan, Pramoch Rangsunvigit, Kunchana Bunyakiat, Lalita Attanatho, Peesamai Jenvanitpanjakul, Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts, Chemical Engineering Journal 116 (2006) 61–66.
58. 中華民國國家標準(CNS),CNS15072,生質柴油-脂肪酸甲酯。
59. Abderrahim Bouaid, Mercedes Martinez, José Aracil, Long storage stability of biodiesel from vegetable and used frying oils, Fuel 86 (2007) 2596–2602.
60. 林忠亮,方炳勳,黃冬梨,生質柴油儲存安定性探討,石油季刊,第四十四卷,第四期,第59~66頁,2008。
61. M. Edlund, H. Visser,and P. Heitland,Analysis of biodiesel by argon-oxygen mixed-gas inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom., 17 (2002) 232-235.
62. 陳維新,能源概論,高立圖書,台北,第8-4頁,2009。
63. 李宗育,利用廢棄沙拉油製造生質柴油之研究,碩士論文,高苑科技大學高分子環保材料研究所,2005。
64. J. Kahn, H. Rang and J. Kriis, Advance in biodiesel fuel research. Proc.Estonian Acad. Sci. Chem., 51 (2002) 75-117.
65. M. Edlund, H. Visser,and P. Heitland,Analysis of biodiesel by argon-oxygen mixed-gas inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom., 17 (2002) 232-235.
66. 黃沛軒,以Cu金屬塗覆爐石處理氨氣之研究,碩士論文,國立中山大學環境工程研究所,2003。
67. 爐石利用推廣手冊,中國鋼鐵公司,2000。
68. 李春雄,中鋼轉爐石回脹抑制方法之研究,碩士論文,國立成功大學土木工程研究所,2002。
69. 王和源,曾學雄,黃文亮,朱彥瑋,林昱憲台灣南部再生綠建材應用之研究,工程科技與教育學刊 第七卷 第二期,2010。
70. 中華民國國家標準(CNS),CNS15051,油脂衍生物(脂肪酸甲酯)-總脂肪酸甲酯及次亞麻油酸甲酯含量測定法。
71. 中華民國國家標準(CNS) ,CNS14906,石油產品酸價試驗法(電位滴定法)
72. 中華民國國家標準(CNS),CNS15060,生質柴油(脂肪酸甲酯)-碘價測定法。
73. 中華民國國家標準(CNS),CNS1501,化學試藥試驗法通則。
74. 中華民國國家標準(CNS),CNS3390,透明及不透明液體之黏度測定法。
75. 中華民國國家標準(CNS),CNS12017,原油及液體石油產品比重測定法(比重計法)。
76. 呂紹裕,轉爐石應用於油脂轉化為生質柴油之可行性評估,碩士論文,國立宜蘭大學化學工程與材料工程學系,2010。
77. 李德河,王金鐘,李春雄,轉爐石回脹特性之研究,2002年公共工程學術研討會論文集,第219~245頁,2002。
78. 葉珍瑜,儲存條件對生質柴油之物化性質及燃燒特性之探討,碩士論文,國立宜蘭大學化學工程與材料工程學系,2010。
79. 張沛翎,粉體粒徑對gibbsite至α-Al2O3相轉換的影響,博士論文,國立成功大學資源工程研究所,2008。
80. 賴思蓉,χ-Al2O3粉體粒徑對其相轉換之影響,碩士論文,國立成功大學資源工程研究所,2007。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔