(3.236.214.19) 您好!臺灣時間:2021/05/10 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳冠名
研究生(外文):Chen, Kuan Ming
論文名稱:探討 Corbicula fluminea 萃取物之抗發炎能力與分離有效成分
論文名稱(外文):To analyze Corbicula fluminea extracts on anti-inflammatory function and its active compounds
指導教授:林佳靜 博士
指導教授(外文):Chai Ching Ph.D.
口試委員:王重雄林佳靜陳威戎花國鋒
口試委員(外文):Wang, Chong HsiungLin, Chai-ChingChen, Wei JungHua, Kuo Feng
口試日期:100.06.30
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術研究所碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:63
中文關鍵詞:抗發炎
外文關鍵詞:Corbicula flumineaanti-inflammatory
相關次數:
  • 被引用被引用:2
  • 點閱點閱:453
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:1
台灣蜆別名淡水蜆 (Freshwater clam),其學名為Corbicula fluminea,生長環境為淡水泥底棲生物,常在中藥及民間傳統中用來治療肝臟的相關疾病,而在近幾年已經有許多的科學佐證指出,台灣蜆萃取物具有抗氧化、抗癌及降低化學性誘導肝的損傷程度,並且也有分離出蜆萃取物內含有固醇類的抗癌相關物質;由於近年來證實許多老化疾病與慢性發炎有關,例如:糖尿病、粥狀動脈硬化、腦部退化性疾病等等,而發炎反應為正常的免疫反應,其主要參與作用的細胞群為吞噬型免疫細胞,包括單核球、巨噬細胞、噬中性球及樹突細胞,而當這些細胞受到外源性或內源性的物質刺激活化後,會開啟細胞的訊息傳遞,例如:MAPK pathway 與 IкB pathway,進而分別活化轉錄因子 NF-кB與AP-1,促使發炎調節因子大量表現,例:一氧化氮 (NO)、腫瘤壞死因子 (TNF-α)、介白素-1β (IL-1)、介白素-6 (IL-6)及環氧化酵-2 (COX-2)等,這些因子會調控發炎反應的進行。
本實驗目的為探討台灣蜆萃取物之抗發炎能力,並且分離及檢測其有效成分。此外,以NO產生量來評估蜆萃取物對神經膠細胞抗發炎的效果。本實驗方法:將台灣蜆的粉末浸泡於水層及乙醇層24小時後,收取浸泡液進行離心及過濾後,分別將水層萃取物 (Water extract of Corbicula fluminea, WCF) 進行冷凍乾燥,及乙醇層 (Ethanol extract of Corbicula fluminea, ECF) 進行減壓濃縮,將乾燥物秤重並以相同的溶液回溶,利用小鼠巨噬細胞RAW 264.7進行抗發炎活性測試。結果顯示:乙醇層ECF對脂多醣 (lipopolysaccharide, LPS) 刺激所產生的NO具有顯著性的抑制效果,但對於細胞的存活率卻沒有影響;相較之下,WCF則無抑制NO產生的效果。
因此,進一步進行ECF的純化及分離,遂以不同極性的溶劑,包括水、甲醇、乙酸乙酯及正己烷進行純化分離,結果顯示:乙酸乙酯分層 (ECF-EA) 萃取物對於NO的產生量有最明顯的抑制效果,並對於發炎細胞激素TNF-α、IL-6與一氧化氮合成酶 (inducible nitric oxide synthase, iNOS) 的產生量亦是。繼之證實:其抑制發炎路徑可能經由抑制MAPK路徑的p38與JNK磷酸化,以及IкB路徑的IкB的磷酸化,分別減少轉錄因子NF-κB與AP-1的活化,進而減少發炎調節因子的產生,遂達到抗發炎之效果。
此外,探討神經性發炎反應為使用初代神經膠細胞模式,而實驗的結果顯示:ECF-EA萃取物,可有效降低經LPS刺激的神經膠細胞於NO的產生量。ECF-EA萃取物經由GC-Mass分析出的結果,發現多種可能具有抗發炎能力的成分,而以單一標準品palmitoleic acid, palmitic acid, heptadecanoic, oleic acid, stearic acid, cholesterol, campesterol與stigmasterol檢測其抑制NO能力,結果顯示:palmitic acid (10 uM)、palmitoleic acid (10 uM)、stearic acid (10 uM)、oleic acid (10 uM)、heptadecanoic acid (20 uM) 與cholesterol (20 uM)具有顯著抑制NO產生的能力。因而推測:台灣蜆萃取物ECF-EA內可能的抗發炎物質為脂肪酸類物質。綜合以上結果得知,蜆萃取物ECF-EA可有效抑制巨噬細胞及神經膠細胞發炎調節因子的產生,其作用機制可能為抑制MAPK路徑的p38與JNK磷酸化,以及IкB路徑的IкB磷酸化,進而減少下游轉錄因子NF-κB與AP-1的活化,達到抗發炎之效果。

The scientific name of Corbicula fluminea is often used to be the Chinese diet therapy for liver diseases. In previous studies, the extract of Corbicula fluminea had the functions of antioxidant, anticancer and to reduce liver injury. Also, our previous data showed that it seemed to decrease the inflammatory responses. Although inflammation is a normal innate immunity which the major participated cell group is phagocytes, including macrophage, monocyte and neutrophil. Many studies indicated that aging diseases are closely related to chronic inflammation, such as diabetes, arteriosclerosis and neurodegenerative diseases. When some exogenous or endogenous immune stimulators, such as lipopolysaccharide (LPS), triggered phagocytes, they will bind to the Toll-like receptor 4 (TLR) and activate MAPK and IкB pathways. Then, the transcription factors, NF-кB and AP-1, are stimulated, and many inflammation mediators, such as nitrogen monoxide (NO), TNF-α, IL-1β, IL-6 and COX-2, are released. These inflammation mediators will control the progression of inflammatory responses.
In this study, the objective was to detect the anti-inflammatory functions of the extract of Corbicula fluminea on Raw 264.7 cells and also on the primary culture of glia cells. The results showed that the ethanol extract of Corbicula fluminea (ECF) could inhibit NO production, but the water extract of Corbicula fluminea (WCF) not. Then, we used different solvents to extract ECF again, such as water, methanol, ethyl acetate and hexane. Finally, ethyl acetate extract of ECF (ECF-EA) had the best inhibition to the NO production. Therefore, the following experiments to detect the anti-inflammatory functions and their mechanism were all made by ECF-EA. These data suggested that ECF-EA could reduce the inflammatory mediators, such as IL-6, TNF-α and iNOS, through the inhibition of p38 and JNK phosphorylation in MAPK pathway, and also of IкB phosphorylation in IкB pathway. In addition, ECF-EA inhibited the NO production in primary culture of glia cells. We analyzed the ECF-EA by GC-Mass, which majorly consisted of some phytosterols and fatty acids. Then, the standards of palmitoleic acid, plamitic acid, heptadecanoic, oleic acid, stearic acid, cholesterol, campesterol and stigmasterol, used to test anti-inflammation by NO production assay. The data showed the palmitic acid (10 uM),palmitoleic acid (10 uM),stearic acid (10 uM),oleic acid (10 uM),heptadecanoic acid (20 uM) and cholesterol (20 uM) could inhibited NO production in LPS-treated RAW 264.7 cells. Therefore, fatty acid may be the major anti-inflammatory compounds in ECF-EA
In conclusion, the extract of Corbicula fluminea had great anti-inflammatory function in Murine macrophage (RAW 264.7) and primary culture of glia cells by the inhibition p38 and JNK activation of the MAPK pathway and IкB activation of NF-кB pathway.

Index
Index……….. I
Table index IV
Figure index V
致謝……… VII
中文摘要……… 1
Abstract………………………………………………………………………….3
Introduction 5
Chapter 1 Literature review 7
1.1 Corbicula fluminea 7
1.2 The Chinese diet therapy of Corbicula fluminea 8
1.3 The inflammatory response 9
1.4 Signal transduction of inflammation 10
1.5 Inflammation and neurodegeneration in Parkinson’s disease (PD) 12
1.6 Common strategies for anti-inflammatory therapy 14
Chapter 2 Materials and Methods 17
2.1 Materials: 17
2.2 Experimental framework 18
2.3 Extraction protocol of Corbicula fluminea 19
2.3.1 Ethanol extract 19
2.3.2 Water Extract 19
2.3.3 Sub-extraction of ethanol extract of corbicula fluminea (ECF) 21
2.4 Cell cultures 22
2.4.1 RAW 264.7 culture 22
2.4.2 RAW-BlueTM culture 22
2.4.3 Primary culture of glial cell 22
2.5 Microculture tetrazolium (MTT) assay for cell viability 23
2.6 Nitric oxide production assay 24
2.7 Enzyme-Linked ImmunoSorbent Assay (ELISA) 25
2.8 Western blot 26
2.9 NF-κB reporter assay 26
Statistical analysis 27
Chapter 3 Results 28
3.1 ECF suppressed the production of nitric oxide in LPS-activated RAW264.7 28
3.2 ECF had not affect the survival of RAW264.7 cells 28
3.3 ECF-EA fraction had the best suppression ability to produce NO in LPS-induced RAW264.7 28
3.4 ECF-EA suppressed the NF-κB activation 29
3.5 ECF-EA suppressed the production of IL-6 and TNF-α in LPS-treated RAW264.7 cells 29
3.6 ECF-EA suppressed expression the iNOS and COX-2 in LPS-activated RAW264.7 cells. 30
3.7 ECF-EA suppressed the activation of upstream signaling events, including the activation of p38 and JNK in the MAPK pathway and IкB in the NF- кB pathway. 30
3.8 ECF-EA suppressed the production of nitric oxide in LPS-treated primary culture of glia cells 30
3.9 ECF-EA did not affect the survival of primary culture of glia cells 31
3.10 ECF-EA had not inhibit the production of TNF-α in LPS-treated primary culture of glia cells 31
3.11 Single compounds in ECF-EA inhibited NO production. 31
Chapter 4 Discussion 45
Chapter 5 Conclusion 47
Reference………. 48

Table index
Page
Table 1-1. The scientific classification of Corbicula fluminea…………………….7
Table 2-1. Commercial and catalog numbers of chemicals………………………..17
Table 2-2. The used of 1° antibodies and 2° antibodies……………………………26
Table 3-1. Effect of pure compounds in ECF-EA on the inhibition of NO production………………………………………………………………………….44 
Figure index
Page
Figure 1-1. The picture of Corbicula fluminea…………………………………….7
Figure 1-2. The inflammatory diseases ………………………………………….. .9
Figure 1-3. Signal transduction of inflammation………………………………….11
Figure 1-4. Possible links between neuroinfl ammatory processes and oxidative damage to dopaminergicneurons in Parkinson’s disease…………….. 13
Figure 1-5.The inflammatory response of COX-2 pathway……………………....15
Figure 2-1. Extraction protocol of Corbicula fluminea…………………………...20
Figure 2-2. The fraction protocol of ECF………………..……………………... ..21
Figure 2-3. The Principle of MTT to assay cell viability………………………... .23
Figure 2-4. The Principle of Gress test to assay NO production………………… 24
Figure 3-1. Effect of ECF and WCF on expression of nitric oxide……………….32
Figure 3-2. Effect of ECF on cell viability………………………………………..33
Figure 3-3. Effects of different ECF fractions on the inhibition of nitric oxide production…………………………………………………………………………34
Figure 3-4. Effect of ECF-EA on the inhibition of NF-кB activation…………….35
Figure 3-5. Effect of ECF-EA on the inhibition of IL-6 and TNF-α production… 36
Figure 3-6. Effect of ECF-EA on the inhibition of iNOS and COX-2 expression..37.
Figure 3-7. Effect of ECF-EA on the activation of MAPK pathway and IкB…… 38
Figure 3-8. Effect of ECF-EA on the inhibition of NO production in primary culture of glia cells ……………………………………………………………………….39
Figure 3-9. Effect of ECF on the cell viability of primary culture of glia cells…..40
Figure 3-10. Effect of ECF-EA on the inhibition of TNF-α production in primary culture of glia cells……………………………………………………….…........41
Figure 3-11. Identify the active compounds by GC-Mass……………………….42


郭仁杰、何雲達。1997。台灣蜆養殖業之經營現況與經營分析。水產研究。5: 141-155
陳讚昌、廖國焱、巫文隆。1992。台灣蜆 (Corbicular fluminea)在本省之研究與展望。貝類學報,17:37-49
陳松聰。1996。貝類。水產加工。P.94。豐年社。台北。
Anrather, J., Racchumi, G., and Iadecola, C. (2006). NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 281, 5657-5667.
Ara, J., Przedborski, S., Naini, A.B., Jackson-Lewis, V., Trifiletti, R.R., Horwitz, J., and Ischiropoulos, H. (1998). Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci U S A 95, 7659-7663.
Asanuma, M., Nishibayashi-Asanuma, S., Miyazaki, I., Kohno, M., and Ogawa, N. (2001). Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 76, 1895-1904.
Bode, C., and Bode, J.C. (2005). Activation of the innate immune system and alcoholic liver disease: effects of ethanol per se or enhanced intestinal translocation of bacterial toxins induced by ethanol? Alcohol Clin Exp Res 29, 166S-171S.
Bresnihan, B. (1999). Pathogenesis of joint damage in rheumatoid arthritis. J Rheumatol 26, 717-719.
Brochard, V., Combadiere, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., Bonduelle, O., Alvarez-Fischer, D., Callebert, J., Launay, J.M., et al. (2009). Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119, 182-192.
Burmester, G.R., Stuhlmuller, B., Keyszer, G., and Kinne, R.W. (1997). Mononuclear phagocytes and rheumatoid synovitis. Mastermind or workhorse in arthritis? Arthritis Rheum 40, 5-18.


Chen, T.Y., Lin, B.C., Shiao, M.S., and Pan, B.S. (2008). Lipid-lowering and LDL-oxidation inhibitory effects of aqueous extract of freshwater clam (Corbicula fluminea)--using tilapia as an animal model. J Food Sci 73, H148-154.
Chijimatsu, T., Tatsuguchi, I., Oda, H., and Mochizuki, S. (2009). A Freshwater clam (Corbicula fluminea) extract reduces cholesterol level and hepatic lipids in normal rats and xenobiotics-induced hypercholesterolemic rats. J Agric Food Chem 57, 3108-3112.
Choi, C., and Benveniste, E.N. (2004). Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res Brain Res Rev 44, 65-81.
Choi, D.K., Pennathur, S., Perier, C., Tieu, K., Teismann, P., Wu, D.C., Jackson-Lewis, V., Vila, M., Vonsattel, J.P., Heinecke, J.W., et al. (2005). Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice. J Neurosci 25, 6594-6600.
Ferger, B., Leng, A., Mura, A., Hengerer, B., and Feldon, J. (2004). Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem 89, 822-833.
Ferrero-Miliani, L., Nielsen, O.H., Andersen, P.S., and Girardin, S.E. (2007). Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147, 227-235.
Gauss, K.A., Nelson-Overton, L.K., Siemsen, D.W., Gao, Y., DeLeo, F.R., and Quinn, M.T. (2007). Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-alpha. J Leukoc Biol 82, 729-741.
Gracie, J.A., Forsey, R.J., Chan, W.L., Gilmour, A., Leung, B.P., Greer, M.R., Kennedy, K., Carter, R., Wei, X.Q., Xu, D., et al. (1999). A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 104, 1393-1401.
Hampton, M.B., Kettle, A.J., and Winterbourn, C.C. (1998). Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007-3017.
Hirsch, E.C., and Hunot, S. (2009). Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol 8, 382-397.


Hsu, C.L., Hsu, C.C., and Yen, G.C. (2010). Hepatoprotection by freshwater clam extract against CCl4-induced hepatic damage in rats. Am J Chin Med 38, 881-894.
Huang, Y.T., Huang, Y.H., Hour, T.C., Pan, B.S., Liu, Y.C., and Pan, M.H. (2006). Apoptosis-inducing active components from Corbicula fluminea through activation of caspase-2 and production of reactive oxygen species in human leukemia HL-60 cells. Food Chem Toxicol 44, 1261-1272.
Hunot, S., Boissiere, F., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y., and Hirsch, E.C. (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72, 355-363.
Hunot, S., Dugas, N., Faucheux, B., Hartmann, A., Tardieu, M., Debre, P., Agid, Y., Dugas, B., and Hirsch, E.C. (1999). FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19, 3440-3447.
James, L., Levenson. (2006). Psychiatric issues in Rheumatology. Primary Psychiatry 13(11), 22-27
Jellinger, K.A. (2001). The pathology of Parkinson's disease. Adv Neurol 86, 55-72.
Kim, H.J., Hawke, N., and Baldwin, A.S. (2006). NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 13, 738-747.
Kinne, R.W., Brauer, R., Stuhlmuller, B., Palombo-Kinne, E., and Burmester, G.R. (2000). Macrophages in rheumatoid arthritis. Arthritis Res 2, 189-202.
Knott, C., Stern, G., and Wilkin, G.P. (2000). Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 16, 724-739.
Kwon, K.H., Murakami, A., Hayashi, R., and Ohigashi, H. (2005). Interleukin-1beta targets interleukin-6 in progressing dextran sulfate sodium-induced experimental colitis. Biochem Biophys Res Commun 337, 647-654.
Lehmann, J.M., Lenhard, J.M., Oliver, B.B., Ringold, G.M., and Kliewer, S.A. (1997). Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272, 3406-3410.



Lemmers, A., Moreno, C., Gustot, T., Marechal, R., Degre, D., Demetter, P., de Nadai, P., Geerts, A., Quertinmont, E., Vercruysse, V., et al. (2009). The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49, 646-657.
Lin, W.W., and Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117, 1175-1183.
Lu, Y.C., Yeh, W.C., and Ohashi, P.S. (2008). LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151.
McGeer, E.G., and McGeer, P.L. (2003). Inflammatory processes in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 27, 741-749.
McGeer, P.L., and McGeer, E.G. (2002). Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26, 459-470.
McGeer, P.L., and McGeer, E.G. (2004). Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat Disord 10 Suppl 1, S3-7.
McGeer, P.L., Yasojima, K., and McGeer, E.G. (2001). Inflammation in Parkinson's disease. Adv Neurol 86, 83-89.
Medzhitov, R., and Janeway, C.A., Jr. (1997). Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295-298.
Mirriam, M., Paula, M. I., Leyre, M., Mirriam, H., Jose, B., and Carmen, G. (2011). A easy and fast way to obtain a high number of glial cells from rat cerebral tissue: A beginners approach. Protocol Exchange, doi:10.1038
Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19, 683-765.
Pott Godoy, M.C., Tarelli, R., Ferrari, C.C., Sarchi, M.I., and Pitossi, F.J. (2008). Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease. Brain 131, 1880-1894.
Przedborski, S., Chen, Q., Vila, M., Giasson, B.I., Djaldatti, R., Vukosavic, S., Souza, J.M., Jackson-Lewis, V., Lee, V.M., and Ischiropoulos, H. (2001). Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J Neurochem 76, 637-640.
Qian, L., Block, M.L., Wei, S.J., Lin, C.F., Reece, J., Pang, H., Wilson, B., Hong, J.S., and Flood, P.M. (2006). Interleukin-10 protects lipopolysaccharide-induced neurotoxicity in primary midbrain cultures by inhibiting the function of NADPH oxidase. J Pharmacol Exp Ther 319, 44-52.
Qian, L., Flood, P.M., and Hong, J.S. (2010). Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy. J Neural Transm 117, 971-979.

Schindler, J.F., Monahan, J.B., and Smith, W.G. (2007). p38 pathway kinases as anti-inflammatory drug targets. J Dent Res 86, 800-811.
Seki, E., De Minicis, S., Gwak, G.Y., Kluwe, J., Inokuchi, S., Bursill, C.A., Llovet, J.M., Brenner, D.A., and Schwabe, R.F. (2009). CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest 119, 1858-1870.
Sekine, Y., Yumioka, T., Yamamoto, T., Muromoto, R., Imoto, S., Sugiyma, K., Oritani, K., Shimoda, K., Minoguchi, M., Akira, S., et al. (2006). Modulation of TLR4 signaling by a novel adaptor protein signal-transducing adaptor protein-2 in macrophages. J Immunol 176, 380-389.
Strle, K., Zhou, J.H., Shen, W.H., Broussard, S.R., Johnson, R.W., Freund, G.G., Dantzer, R., and Kelley, K.W. (2001). Interleukin-10 in the brain. Crit Rev Immunol 21, 427-449.
Tacke, F., Luedde, T., and Trautwein, C. (2009). Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 36, 4-12.
Takeda, K., and Akira, S. (2001). Regulation of innate immune responses by Toll-like receptors. Jpn J Infect Dis 54, 209-219.
Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376.
Teismann, P., Tieu, K., Choi, D.K., Wu, D.C., Naini, A., Hunot, S., Vila, M., Jackson-Lewis, V., and Przedborski, S. (2003). Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc Natl Acad Sci U S A 100, 5473-5478.
Tilg, H., Kaser, A., and Moschen, A.R. (2006). How to modulate inflammatory cytokines in liver diseases. Liver Int 26, 1029-1039.
van der Vliet, A., Eiserich, J.P., Halliwell, B., and Cross, C.E. (1997). Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem 272, 7617-7625.
Wu, D.C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V., Ischiropoulos, H., and Przedborski, S. (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci U S A 100, 6145-6150.
Yu, T., Lee, J., Lee, Y.G., Byeon, S.E., Kim, M.H., Sohn, E.H., Lee, Y.J., Lee, S.G., and Cho, J.Y. (2010). In vitro and in vivo anti-inflammatory effects of ethanol extract from Acer tegmentosum. J Ethnopharmacol 128, 139-147.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔