(18.232.50.137) 您好!臺灣時間:2021/05/06 17:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊舒翔
研究生(外文):Shu-Hsiang Yang
論文名稱:構築雙基因表現之PCV2 DNA疫苗並以小鼠為動物模式測試其效力
論文名稱(外文):Construction the PCV2 bicistronic DNA vaccine and the effecacy test in mice model
指導教授:郭村勇
指導教授(外文):Tsun-Yung Kuo
口試委員:賴秀穗鄭金益
口試委員(外文):Shiow-Suey LaiJin-yi Cheng
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術研究所碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:豬環狀病毒第二型DNA疫苗雙基因表現
外文關鍵詞:DNA vaccineBicistronicPVC2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
豬環狀病毒第二型(Porcine circovirus type II; PCV2)為豬環狀病毒相關疾病 (Porcine circovirus-associated disease; PCVAD)之致病原,此一病原普遍流行於養豬業中,造成養豬業經濟損失。
DNA疫苗併用生物佐劑可以促進DNA疫苗之效能,本論文將顆粒性細胞與巨噬細胞群落生長因子(Granulocyte macrophage-colony stimulating factor; GM-CSF)或介白素2號(Interleukine 2; IL-2)植入含有核醣體內進位(Internal ribosome entry sites: IRES)之共表現載體(Bicistronic plasmid)pIRES2-EGFP中,於前多重選殖位(Multiple cloning site; MCS)植入PCV2 ORF2基因,後端表現區將EGFP置換為小鼠的GM-CSF或IL-2基因片段。
經各重組質體轉染入豬腎細胞株PK-15後,經RT-PCR及IFA檢測證實各植入之基因皆有表現,以ELISA試劑檢測經轉染後三天之細胞上清液可發現轉染pORF2/IRES/mGM-CSF組別之mGM-CSF含量高於625 pg/ml,而pORF2/IRES/mIL-2組別之mIL-2含量則低於250 pg/ml,以小鼠脾臟細胞與骨髓細胞檢測其生物活性,結果顯示轉染pORF2/IRES/mGM-CSF組別細胞所分泌之上清可顯著提高小鼠脾臟細胞與骨髓細胞(p<0.05)之增生。
將DNA疫苗進行小鼠肌肉注射及補強注射後採血測定小鼠體內之PCV2抗體並以PCV2進行攻毒,檢測其病毒血症。結果可見小鼠初級免疫共表現ORF2與mGM-CSF DNA疫苗後若補強注射不活化病毒,其誘發之PCV2抗體與兩次皆注射不活化病毒的組別表現最高(p<0.05),並且病毒血症檢出率最低。經過兩次免疫之小鼠犧牲並測定其脾臟細胞增生試驗及以流式細胞儀分析其T細胞組成,結果可見初級免疫共表現ORF2與mGM-CSF DNA疫苗後若補強注射不活化病毒的組別,其脾臟增生率最高(p<0.05),以及CD4+T細胞的增生最高(p<0.05),綜合以上結果可知,以共表現抗原基因與細胞激素所構築之共表現DNA疫苗免疫,並以不活化病毒進行補強之免疫策略,具有應用於動物疫苗的開發並降低生產成本的潛力。

Porcine circovirus type II (PCV2) is the pathogen of porcine circovirus-associated disease (PCVAD). In swine industry, PCVAD is a common disease and causes serious economical losses. Biological adjuvant could enhance the efficacy of DNA vaccine.
We amplified the PCV2 ORF2 gene and inserted it to the first multiple cloning site of a bicistronic plasmid pIRES2-EGFP, and cloned the cytokine genes of granulocyte macrophage-colony stimulating factor (GM-CSF) or interleukin 2 (IL-2) to replace the EGFP gene. We transfected DNA plasmids of pORF2/IRES, pORF2/IRES/GM-CSF, and pORF2/IRES/IL-2 to porcine kidney cells (PK-15) and was able to detect RNA and protein of all of the target genes using RT-PCR and immunofluorescence assay (IFA). In cell culture supernatant at 72 hours post-transfection, using ELISA, we found the pORF2/IRES/mGM-CSF transfected group contained mGM-CSF concentration of more than 625 pg/ml. The other group transfected with pORF2/IRES/mIL-2 had mIL-2 concentration of less than 250 pg/ml. We then used bone marrow cells and splenocytes to test for cytokine biological activity. Results showed that the supernatant from the pORF2/IRES/mGM-CSF transfected group could significantly enhance the proliferation of both bone marrow cells and splenocytes (p<0.05).
After intramuscular injection of DNA vaccine and booster in mice, we detected anti-PCV2 antibody in mice serum as well as viremia post-PCV2-challenge. Results showed that similar to the group immunized and boosted with inactivated virus, the group primed with pORF2/IRES/mGM-CSF and boosted with inactivated virus elicited the highest antibodies that were significantly higher than the pIRES group (p<0.05) and had the lowest percentage of viremia detection. After the second immunization, some mice were euthanized followed by splenocyte proliferation assay and flow cytometry analysis of T cells. The group primed with pORF2/IRES/mGM-CSF and boosted with inactivated virus had the highest proliferation of splenocytes (p<0.05) and the highest increase in CD4+ T cell population (p<0.05). According to our test results, plasmids containing coexpressional antigenic PCV2 and cytokine genes have the potential for further development as useful animal vaccines.

目錄
中文摘要……………………………………………………………………………I
英文摘要……………………………………………………………………………II
目錄……………………………………………………………………………….III
表目錄…………………………………………………………………………V
圖目錄…………………………………………………………………………VI
第一章 序言…………………………………………………………………..1
第二章 文獻探討………………………………………………………….....3
第一節、豬環狀病毒之源起……………………………………………........3
第二節、豬環狀病毒之分類、病毒型態學與基因組成簡介…………........3
第三節、疫苗發展歷史與DNA疫苗之概述…………………………….....4
第四節、免疫反應與細胞激素概論…………………………………………6
第五節、共表現載體(Bicistronic plasmid)與核醣體內進位(Internal ribosome entry site; IRES)……………………………………………………………...............7
實驗流程……………………………………………………………………………9
第三章 材料與方法………………………………………………………........10
第一節、 質體DNA之構築……………………………………………….....10
1.小鼠細胞激素mIL-2與mGM-CSF基因選殖………………………….....10
2.質體DNA製備……………………………………………………………...11
3.PCR增幅目標基因………………………………………………………….12
4.PCR產物膠體純化………………………………………………………….12
5.限制酶酵素切割反應(Restriction Enzyme Cleavage Reaction) ……………13
6.限制酶酵素切割產物純化…………………………………………………..13
7.接合反應(Ligation) ……………………………………………………….....14
8.製備勝任細胞(Competent cell) ……………………………………………..14
9.轉形作用(Transformation) ………………………………………………......14
10.重組質體的挑選與確認……………………………………………………14
11.重組質體之定序分析……………………………………………………....15
第二節、 DNA重組質體之轉染及重組蛋白之表現………………………...15
1.DNA疫苗轉染豬腎細胞PK-15(Transfection) …………………………….15
2.以RT-PCR法檢測目標基因之RNA………………………………………15
3.免疫螢光染色( Immunofluorescene Assay)與免疫過氧化酶單層細胞分析( immunoperoxidase monolayer assay; IPMA)目標基因之產物……………..16
4.以ELISA Kit檢測細胞激素之產量………………………………………..16
5.小鼠細胞激素mIL-2/mGM-CSF活性之測試……………………………..17
第三節、 以小鼠為動物模式測試PCV2 DNA疫苗之效果………………..18
1.小鼠免疫與採血………………………………………………………….18
2.以ELISA法檢測小鼠抗PCV2之抗體…………………………………18
3.血清中和抗體測試……………………………………………………….19
4.小鼠攻毒測試…………………………………………………………….19
5.以PCR及巢式PCR法檢測病毒血症…………………………………..19
6.細胞增生測試…………………………………………………………….20
7.脾臟細胞記憶性測試…………………………………………………….20
第四節、統計分析數據……………………………………………………20
第四章 結果………………………………………………………………..21
第一節 各基因片段選殖與質體DNA構築……………………………....21
1.剔除pIRES2-EGFP之EGFP基因……………………………………....21
2.小鼠IL-2與GM-CSF基因片段之選殖………………………………....21
3.共表現質體pORF2/IRES/mIL-2及pORF2/IRES/mGM-CSF之構築…21
第二節 以PK-15細胞測試各表現質體之轉染表現……………………...21
1.以RT-PCR法檢測各質體轉染細胞後之基因表現……………………..21
2.螢光免疫染色檢測各蛋白質表現………………………………………..22
3.以ELISA Kit檢測細胞激素分泌量……………………………………...22
4.小鼠細胞激素活性測試…………………………………………………..22
第三節 以小鼠為動物模式檢測DNA疫苗之效果……………………….22
1.以商品化ELISA檢測試劑檢測小鼠抗PCV2抗體……………………..23
2.小鼠血清中和抗體測試…………………………………………………...23
3.小鼠鼻腔攻毒試驗…………………………………………………………23
4.小鼠脾臟細胞增生…………………………………………………………24
5.脾臟增生細胞種類分析……………………………………………………24
第五章 討論……………………………………………………………25
第六章 結論………………………………………………………………….31
參考文獻……………………………………………………………………...76
表目錄
表一、本論文所使用之引子序列、片段長度與切位表……………………32
表二、病毒血症檢測PCV2用引子序列與片段長度表……………………33
表三、以巢式PCR檢測小鼠病毒血症結果表……………………………………..34
表四、以流式細胞儀分析免疫後小鼠脾臟細胞之T細胞組成…………………..35
圖目錄
圖一、PCV1與PCV2基因體組成分析圖…………………………………36
圖二、DNA疫苗免疫途徑圖……………………………………………….36
圖三、 DNA疫苗假設路徑圖之一…………………………………………37
圖四、DNA疫苗假設路徑圖之二………………………………………….37
圖五、DNA疫苗產生細胞性免疫機制圖………………………………….38
圖六、DNA疫苗假設路徑圖之三………………………………………….38
圖七、先天性免疫反應圖……………………………………………………39
圖八、後天免疫反應圖………………………………………………………39
圖九、MHC分子與其對應之T細胞圖…………………………………….40
圖十、各免疫細胞活化後功能圖……………………………………………40
圖十一、後天免疫反應時間與記憶性關係圖……………………………….41
圖十二、細胞激素參與免疫反應圖……………………………………….…41
圖十三、各種轉譯起始機制圖……………………………………………….42
圖十四、共表現載體pIRES2-EGFP質體圖………………………………...42
圖十五、pIRES質體構築圖………………………………………………….44
圖十六、pORF2/IRES質體構築圖…………………………………………..45
圖十七、pmGM-CSF/yT&A與pmIL-2/yT&A質體構築圖………………...46
圖十八、pmGM-CSF/IRES質體構築圖……………………………………...47
圖十九、pmIL-2/IRES質體構築圖……………………………………….….48
圖二十、pORF2/IRES/mGM-CSF質體構築圖………………………………49
圖二十一、pORF2/IRES/mIL-2質體構築圖…………………………………50
圖二十二、小鼠細胞激素mGM-CSF序列………………………………..…51
圖二十三、小鼠細胞激素mIL-2序列……………………………………..…51
圖二十四、小鼠實驗組別與免疫流程圖…………………………………..…52
圖二十五、小鼠鼻腔攻毒行程圖…………………………………………..…52
圖二十六、質體pIRES選殖後定序結果圖……………………………….…53
圖二十七、小鼠細胞激素mGM-CSF序列分析圖………………………..…53
圖二十八、小鼠細胞激素mIL-2選殖後定序結果圖…………………….….54
圖二十九、PCV2 ORF2次選殖至pIRES載體上定序結果圖…………..….55
圖三十、以RT-PCR法檢測經轉染質體DNA之PK-15中PCV2 ORF2 RNA表現結果圖…………………………………………………………………..............56
圖三十一、以RT-PCR法檢測經轉染質體DNA之PK-15中細胞激素GM-CSF與IL-2 RNA表現結果圖………………………………………………………….56
圖三十二、轉染質體DNA之細胞RNA以RNase作用後以PCV2 ORF2引子檢測結果圖………………………………………………………………...................57
圖三十三、PK-15轉染pIRES後以Rabbit anti PCV2與DAPI染色結果圖…………………………………………………………………………….58
圖三十四、 PK-15轉染pORF2/IRES後以Rabbit anti PCV2與DAPI染色結果圖…………………………………………………………………………….59
圖三十五、PK-15轉染pmIL-2/IRES後以Rabbit anti mouse IL-2與DAPI染色結果圖…………………………………………………………………………60
圖三十六、PK-15轉染pmGM-CSF/IRES後以Goat anti mouse GM-CSF
與DAPI染色結果圖……………………………………………………….61
圖三十七、PK-15轉染pORF2/IRES/mIL-2後以Rabbit anti PCV2、Rabbit anti mouse IL-2與DAPI染色結果圖………………………………………………….62
圖三十八、PK-15轉染pORF2/IRES/mGM-CSF後以Rabbit anti PCV2、Goat anti mouse GM-CSF與DAPI染色結果圖…………………………………….63
圖三十九、以ELISA檢測試劑檢測轉染各質體72小時後細胞上清液之mIL-2含量圖…………………………………………………………………………64
圖四十、以ELISA檢測試劑檢測轉染各質體72小時後細胞上清液之mGM-CSF含量圖………………………………………………………………………64
圖四十一、轉染不同質體之PK-15細胞上清液刺激小鼠骨髓細胞之細胞增生結果圖……………………………………………………………………………65
圖四十二、轉染不同質體之PK-15細胞上清液刺激小鼠脾臟細胞之細胞增生結果圖……………………………………………………………………………65
圖四十三、各轉染質體DNA之PK-15上清液刺激小鼠骨髓細胞之細胞增生結果圖……………………………………………………………………………66
圖四十四、各轉染質體DNA之PK-15上清液刺激小鼠脾臟細胞之細胞增生結果圖……………………………………………………………………………67
圖四十五、各免疫組別小鼠抗體含量趨勢圖……………………………68
圖四十六、DNA疫苗免疫小鼠後三週以ELISA法檢測血清抗體結果圖…69
圖四十七、DNA疫苗免疫小鼠後五週以ELISA法檢測血清抗體結果圖…70
圖四十八、DNA疫苗免疫小鼠後七週以ELISA法檢測血清抗體結果圖…71
圖四十九、DNA疫苗免疫小鼠後十二週以ELISA法檢測血清抗體結果...72
圖五十、小鼠血清內含不同滴度病毒液以676引子進行PCR檢測結果…73
圖五十一、小鼠血清內含不同滴度病毒液以284引子進行巢式PCR檢測結果圖…………………………………………………………………………...74
圖五十二、小鼠免疫十二週後之脾臟細胞增生測試結果圖…………...75






楊程堯,張聰洲,蘇秀琪,王珮玲,葉麗君,林嘉鈺,林怡絹,邱明堂。養豬場中第二型豬環狀病毒生物性傳播途徑之探討。台灣獸醫誌 33(1): 66-71,2007。

陶祕華,李上熾。基因疫苗。教育部顧問室「生物技術科技教育改進計畫」疫苗發展技術與實驗 p.64-78,2003。

張天傑。疫苗發展之過去、現在與未來。教育部顧問室「生物技術科技教育改進計畫」疫苗發展技術與實驗 p.4-12,2003。

張照夫。不活化與減毒疫苗。教育部顧問室「生物技術科技教育改進計畫」疫苗發展技術與實驗 p.27-34,2003。

Allan, G. M. et al. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest 10, 3-10 (1998).

Allan, G. M. et al. Pathogenesis of porcine circovirus; experimental infections of colostrum deprived piglets and examination of pig foetal material. Vet Microbiol 44, 49-64 (1995).

Allan, G. M. & Ellis, J. A. Porcine circoviruses: a review. J Vet Diagn Invest 12, 3-14 (2000).

Allan, G. M. et al. Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Arch Virol 145, 2421-2429 (2000).

Bonilla, F. A. & Oettgen, H. C. Adaptive immunity. J Allergy Clin Immunol 125, S33-40, (2010).

Belsham, G. J. Divergent picornavirus IRES elements. Virus Res 139, 183-192, (2009)..

Buchan, S. et al. Electropration as a prime/boost strategy for naked DNA vaccination against a tumor antigen. J Immunol 174:6292–8 (2005)

Chung, S. et al. Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 20, 139-145, (2002).
Clark, E. G. Post-weaning multisystemic wasting syndrome. Proceedings of the American Association of Swine Practitioners. Annual Meeting, Quebec City, Canada, 28th, 499-501 (1997).

Cheung, A. K. & Bolin, S. R. Kinetics of porcine circovirus type 2 replication. Arch Virol 147, 43-58 (2002).

Ellis, J. et al. Isolation of circoviruses from lesions of pigs with postweaning multisystemic wasting syndrome. Can. Vet. J. 39, 44-51 (1998).

Ellis, J. A. et al. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome. J Vet Diagn Invest 12, 21-27 (2000)..

Finsterbusch, T. & Mankertz, A. Porcine circoviruses--small but powerful. Virus Res 143, 177-183 (2009).

Fort, M., Olvera, A., Sibila, M., Segales, J. & Mateu, E. Detection of neutralizing antibodies in postweaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected pigs. Vet Microbiol 125, 244-255,(2007).

Gilpin, D. F. et al. In vitro studies on the infection and replication of porcine circovirus type 2 in cells of the porcine immune system. Vet Immunol Immunopathol 94, 149-161 (2003).

Ghattas, I. R., Sanes, J. R. & Majors, J. E. The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 11, 5848-5859 (1991).

Gurunathan, S., Klinman, D. M. & Seder, R. A. DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 18, 927-974 (2000).

Gillies, S. D., Young, D., Lo, K. M. & Roberts, S. Biological activity and in vivo clearance of antitumor antibody/cytokine fusion proteins. Bioconjug Chem 4, 230-235 (1993).

Gillespie, J., Opriessnig, T., Meng, X. J., Pelzer, K. & Buechner-Maxwell, V. Porcine circovirus type 2 and porcine circovirus-associated disease. J Vet Intern Med 23, 1151-1163 (2009).

Grierson, S. S. et al. Detection and genetic typing of type 2 porcine circoviruses in archived pig tissues from the UK. Arch Virol 149 (2004).

Hamel, A. L., Lin, L. L. & Nayar, G. P. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol 72, 5262-5267 (1998).

Hulse, D. J. & Romero, C. H. Partial protection against infectious bursal disease virus through DNA-mediated vaccination with the VP2 capsid protein and chicken IL-2 genes. Vaccine 22, 1249-1259 (2004).

Henke, A., Chiang, C. S., Zell, R. & Stelzner, A. Co-expression of interleukin-2 to increase the efficacy of DNA vaccine-mediated protection in coxsackievirus B3-infected mice. Antiviral Res 64, 131-136 (2004)

Henke, A., Rohland, N., Zell, R. & Wutzler, P. Co-expression of interleukin-2 by a bicistronic plasmid increases the efficacy of DNA immunization to prevent influenza virus infections. Intervirology 49, 249-252 (2006)

Harding J. C. S, Clark E. G, Strokappe J. H, et al.Postweaning multisystemic wasting syndrome:Epidemiology and clinical presentation. Swine Health and Production. 6(6):249–254 (1998)

Hino, S. TTV, a new human virus with single stranded circular DNA genome. Rev Med Virol 12, 151-158 (2002).

Hellen, C. U. IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Biochim Biophys Acta 1789, 558-570 (2009).

Krakowka, S. et al. Viral wasting syndrome of swine: experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with porcine circovirus 2 and porcine parvovirus. Vet Pathol 37, 254-263 (2000).

Kekarainen, T. et al. Immune responses and vaccine-induced immunity against Porcine circovirus type 2. Vet Immunol Immunopathol 136, 185-193 (2010)

Komar, A. A. & Hatzoglou, M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10, 229-240 (2011).

Kumar, S. et al. Effective protection by high efficiency bicistronic DNA vaccine against infectious bursal disease virus expressing VP2 protein and chicken IL-2. Vaccine 27, 864-869 (2009)

Li, J. et al. A mouse model to study infection against porcine circovirus type 2: viral distribution and lesions in mouse. Virol J 7, 158, (2010).

Lotze, M. T. et al. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J Immunol 135, 2865-2875 (1985).

Liu, M. A. DNA vaccines: an historical perspective and view to the future. Immunol Rev 239, 62-84 (2011).

Liu, J., Chen, I., Du, Q., Chua, H. & Kwang, J. The ORF3 protein of porcine circovirus type 2 is involved in viral pathogenesis in vivo. J Virol 80, 5065-5073 (2006).

Lin, Y. L. et al. DNA immunization with Japanese encephalitis virus nonstructural protein NS1 elicits protective immunity in mice. J Virol 72, 191-200 (1998).

Magar, R., Muller, P. & Larochelle, R. Retrospective serological survey of antibodies to porcine circovirus type 1 and type 2. Can J Vet Res 64, 184-186 (2000).

Meerts, P. et al. Correlation between the presence of neutralizing antibodies against porcine circovirus 2 (PCV2) and protection against replication of the virus and development of PCV2-associated disease. BMC Vet. Res. 2, (2006)

Meehan, B. M. et al. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol 79 ( Pt 9), 2171-2179 (1998).

Mankertz, A. & Hillenbrand, B. Replication of porcine circovirus type 1 requires two proteins encoded by the viral rep gene. Virology 279, 429-438 (2001).

Mankertz, A. et al. Characterisation of PCV-2 isolates from Spain, Germany and France. Virus Res 66, 65-77 (2000).

Meehan, B. M. et al. Isolation and characterization of porcine circovirus 2 from cases of sow abortion and porcine dermatitis and nephropathy syndrome. Arch Virol 146, 835-842 (2001).

Miyata, H. et al. Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J Virol 73, 3582-3586 (1999).

Nawagitgul, P. et al. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol 81, 2281-2287 (2000)..

Nakashima, N. & Uchiumi, T. Functional analysis of structural motifs in dicistroviruses. Virus Res 139, 137-147 (2009).

Operschall, E., Schuh, T., Heinzerling, L., Pavlovic, J. & Moelling, K. Enhanced protection against viral infection by co-administration of plasmid DNA coding for viral antigen and cytokines in mice. J Clin Virol 13, 17-27 (1999).

Opriessnig, T., Meng, X. J. & Halbur, P. G. Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Invest 19, 591-615 (2007).

Pelletier, J. & Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325 (1988).

Phenix, K. V. et al. Nucleotide sequence analysis of a novel circovirus of canaries and its relationship to other members of the genus Circovirus of the family Circoviridae. J Gen Virol 82, 2805-2809 (2001).

Rosell, C. et al. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol 120, 59-78 (1999).

Rosell, C. et al. Identification of porcine circovirus in tissues of pigs with porcine dermatitis and nephropathy syndrome. Vet Rec 146, 40-43 (2000).

Stern, A. C. & Jones, T. C. The side-effect profile of GM-CSF. Infection 20 Suppl 2, S124-127 (1992).

Sanchez R, Nauwynch G, Pensaert M. Proceedings of the International Conference of ssDNA Viruses, Plants, Birds, Pigs, and Primates, St Malo, France, p. 122 (2001).

Segales, J., Allan, G. M. & Domingo, M. Porcine circovirus diseases. Anim Health Res Rev 6, 119-142 (2005).

Stevenson, G. W., Kiupel, M., Mittal, S. K. & Kanitz, C. L. Ultrastructure of porcine circovirus in persistently infected PK-15 cells. Vet Pathol 36, 368-378 (1999).

Shen, H. G. et al. Protective immunity against porcine circovirus 2 by vaccination with ORF2-based DNA and subunit vaccines in mice. J Gen Virol 89, 1857-1865,(2008).

Shen, H. G. et al. Interference of porcine circovirus type 2 ORF2 immunogenicity by ORF1 and ORF3 mixed DNA immunizations in mice. Virology 393, 104-111 (2009).

Takahashi, K., Iwasa, Y., Hijikata, M. & Mishiro, S. Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus. Arch Virol 145, 979-993 (2000).

Tischer, I., Rasch, R. & Tochtermann, G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol Orig A 226, 153-167 (1974).

Tischer, I., Mields, W., Wolff, D., Vagt, M. & Griem, W. Studies on epidemiology and pathogenicity of porcine circovirus. Arch Virol 91, 271-276 (1986).

Todd, D. et al. Comparison of three animal viruses with circular single-stranded DNA genomes. Arch Virol 117, 129-135 (1991).

Todd, D., McNulty, M. S., Adair, B. M. & Allan, G. M. Animal circoviruses. Adv Virus Res 57, 1-70 (2001a).

Todd, D., Weston, J. H., Soike, D. & Smyth, J. A. Genome sequence determinations and analyses of novel circoviruses from goose and pigeon. Virology 286, 354-362 (2001b).

Todd, D., Bendinelli, M., Biagini, P., Hino, S., Mankertz, A., Mishiro, S., Niel, C., Okamoto, H., Raidal, S., Ritchie, B. W., & Teo, G.C. Cirocoviridae. In: Virus Taxonomy, VIIIth Report of the international Committee for the Taxonomy of Viruses (C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, and L.A. Ball, eds), 327-334 (2005).

Truong, C. et al. Identification of an immunorelevant ORF2 epitope from porcine circovirus type 2 as a serological marker for experimental and natural infection. Arch Virol 146, 1197-1211 (2001).

Ulmer, J. B., Donnelly, J. J. & Liu, M. A. Toward the development of DNA vaccines. Curr Opin Biotechnol 7, 653-658 (1996).

Ulmer, J. B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745-1749 (1993).

Vincent, I. E. et al. Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J Virol 77, 13288-13300 (2003).

Vagner, S., Galy, B. & Pyronnet, S. Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep 2, 893-898 (2001).

van Rooij, E. M., Rijsewijk, F. A., Moonen-Leusen, H. W., Bianchi, A. T. & Rziha, H. J. Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs. Vaccine 28, 1808-1813 (2010)
Wong, P., Lara-Tejero, M., Ploss, A., Leiner, I. & Pamer, E. G. Rapid development of T cell memory. J Immunol 172, 7239-7245 (2004)

Wong, H. T. et al. A DNA vaccine against foot-and-mouth disease elicits an immune response in swine which is enhanced by co-administration with interleukin-2. Vaccine 20, 2641-2647 (2002).

Wolff, J. A., Ludtke, J. J., Acsadi, G., Williams, P. & Jani, A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1, 363-369 (1992).

Walker, I. W. et al. Development and application of a competitive enzyme-linked immunosorbent assay for the detection of serum antibodies to porcine circovirus type 2. J Vet Diagn Invest 12, 400-405 (2000).

Xiang, Z. Q. et al. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology 199, 132-140 (1994)

Xu, L. et al. Immunization for Ebola virus infection. Nat Med 4, 37-42 (1998).

Zhou, J. Y. et al. Serological investigation and genomic characterization of PCV2 isolates from different geographic regions of Zhejiang province in China. Vet Res Commun 30, 205-220 (2005).

Zhang, H. Y. et al. Optimization strategy for plasmid DNAs containing multiple-epitopes of foot-and-mouth disease virus by cis-expression with IL-2. Vaccine 26, 769-777 (2008)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔