(3.238.173.209) 您好!臺灣時間:2021/05/16 19:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:何幸珊
研究生(外文):He, Sing-Shan
論文名稱:以不同pH碳酸緩衝液浸泡前處理對發芽中芝麻抗氧化力影響
論文名稱(外文):The effect of different pH sodium hydrogen carbonate solutions soaking pretreatment on antioxidant activities of germinating sesame
指導教授:邱一鳴
指導教授(外文):Chiu, E-Mean
口試委員:陳翠瑤蘇崇文黃中宜
口試日期:2011-07-27
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:93
中文關鍵詞:芝麻逆境發芽抗氧化木酚素
外文關鍵詞:sesamestressgerminationantioxidative activitylignans
相關次數:
  • 被引用被引用:1
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
芝麻(Sesamun indicum L.)屬於胡麻科,為一年生自花授粉的油料作物。因其特別的風味及所含芝麻木酚素(lignan)的抗氧化特性,在東方食品中深受喜愛。芝麻具有很多有益的生理功效,主要為芝麻油中含多種天然抗氧化物質,包括:芝麻素(sesamin)、芝麻林素(sesamolin)、生育酚(tocopherol)等化合物與植物固醇,具有抗氧化、降低膽固醇、清除體內自由基等功效。本研究以黑芝麻浸泡於不同 pH (5、7、9) 碳酸鹽溶液(Sodium hydrogen carbonate buffered saline, CBS)與對照組去離子水(DIW),浸泡9小時後,置於培養箱25℃發芽1-6天,每天採收芽苗一次,經冷凍乾燥處理,以甲醇萃取發芽期間發芽芝麻及芝麻油的活性成分,探討發芽芝麻和芝麻油之抗氧化成分及抗氧化活性的變化。 芝麻發芽期間一般成分的乾基重變化,灰分含量為4.84-6.06%和粗蛋白質含量為17.72-23.23%,並無顯著的變化,但粗脂肪含量66.40-33.15%會隨碳水化合物含量為9.12-38.91%增加而減少。而於發芽期間各脂肪酸百分比組成無顯著變化。芝麻發芽期間發芽芝麻和芝麻油甲醇粗萃物抗氧化成分的變化,顯示總多酚、成分A和成分B的含量,隨發芽期間延長而增加。發芽芝麻和芝麻油總多酚含量的變化,分別由發芽前的16 mg gallic acid / g MeOH extract 和 6 mg gallic acid / g MeOH extract ,發芽至第6天分別提升約50-80 mg gallic acid / g MeOH extract 和20-30 mg gallic acid / g MeOH extract左右,且發芽芝麻的總多酚含量是遠高於芝麻油,而發芽芝麻在所有處理中,以DIW處理組總多酚含量增加最快,芝麻油則是pH9-CBS處理組總多酚含量增加最快。 但sesamin及sesamolin含量,隨發芽過程呈顯著下降,而γ-tocopherol 的含量隨發芽過程呈現先上升後下降趨勢。發芽期間sesamin、sesamolin及γ–tocopherol含量由發芽前的194.66 mg / 100 g oil、209.64 mg / 100 g oil及51.27 mg / 100 g oil ,於發芽第6天時,分別下降至最低為60.10 mg / 100 g oil、92.50 mg / 100 g oil及40.42 mg / 100 g oil 左右。
接著是發芽期間發芽芝麻和芝麻油甲醇粗萃物之抗氧化活性的測定,顯示DPPH自由基清除力、還原力和ORAC總抗氧化力,隨發芽期間延長而呈現增加趨勢。但螯合亞鐵離子的能力表現,則呈先上升後下降的趨勢。各處理組之間,顯示比較有無碳酸鹽浸泡處理對發芽期間芝麻芽甲醇粗萃物之抗氧化活性,以DIW > CBS處理組,若比較不同 pH 條件下,顯示出pH 對抗氧化活性影響不大。若比較有無碳酸鹽浸泡處理對發芽期間芝麻油甲醇粗萃物之抗氧化活性,以CBS > DIW處理組,若比較不同 pH 條件下,為pH5-CBS > pH7-CBS > pH9-CBS。

esame (Sesamun indicum L) belongs to the Pedaliaceae family and is an annual, selfpollinated oilseed crop. It has been preferentially consumed in oriental food because of its distinctive flavor and the stabilizing antioxidant properties of sesame lignans. Sesame exhibits many beneficial physiological effects, which are mostly various kinds of natural anti-oxidant materials, such as sesamin, seasamolin, tocopherol, ect. Its chemical stability can be used in anti-oxidant, reducing the cholesterol and removing the internal free radicals. After soaking with different pH(5.7.9)sodium hydrogen carbonate solutions and deionized water for 9 hours, sesame was placed in incubator at 25℃ for 1-6 days germination. Sesame seedlings were sampled each date in the period of germination, then freeze dried for the following studies. Methanol extracts of sesame seedlings and sesame oil were then used for antioxidants analysis and antioxidation activity evaluation in this study. In order to trace the changes of proximate composition in sesame during germination, the ingredients of sesame seedling was analyzed. There was no significant difference on the content of ash 4.846.06% and crude protein 17.72-23.23 %, nevertheless the amount of carbohydrate 9.12-38.91% increased while crude fat 66.40-33.15% decreased proportionally in the period of germination. Regard to the fatty acid composition in sesame oil, there was no significant difference in percentage of fatty acid constituents during germination of sesame. The changes of antioxidants in sesame seedlings and sesame oils showed that the content of total polyphenols, compound A and compound B increased significantly during germination, and the total polyphenols in sesame seedling and oils distributed within 16-80 mg / g MeOH extract and 6-30 mg / g MeOH extract respectly. The content of total polyphenols in sesame seedlings higher than sesame oils. The amount of total polyphenols in sesame seedlings raised fastest in all of the soaking pretreatments when pretreated with DIW, and that was in the sesame oils when pretreated with pH9-CBS. On the contrary, the quanty of sesamin, sesamolin and γ-tocopherol contained in sesame were decreased in the period of germination, their levels were within 194.66-60.10 mg /100 g oil, 209.64-92.50 mg / 100 g oil and 51.27-40.42 mg / 100 g oil respectly. For evaluating the antioxidation capacity of sesame during germination, the reducing power, DPPH free radical scavenging ability and ORAC capacity were estimated. In the period of germination, the reducing power, scavenging DPPH free radical and ORAC activity of sesame seedlings and sesame oil were accelerated. However, The chelating ability of ferrous raised at the early period of germination, and then declined at a later period. In generally, regardless the methods used for estimating the antioxidative activity. It was the antioxidative activity of sesame seedlings in DIW > CBS soaking pretreatment, if compared of different pH sodium hydrogen carbonate solutions soaking pretreatment on antioxidant activities, pH showed little effect on antioxidant activity. It was the antioxidative activity of sesame oils in CBS > DIW soaking pretreatment, if compared of different pH sodium hydrogen carbonate solutions soaking pretreatment on antioxidant activities, show for thepH5-CBS > pH7-CBS > pH9-CBS.

目錄
中文摘要 .......................................................................................................... I Abstract ........................................................................................................ III
目錄............................................................................................................... V
表目錄 .............................................................................................................IX
圖目錄 .............................................................................................................XI
前言 1
貳、文獻整理 3
一、芝麻之簡介 3
(一)一般成分 3
(二)機能性成分 4
1. Lignans 4
2. 酚類物質 7
3. 維生素E 8
二、自由基 11
(一)自由基的種類 12
(二)自由基的產生 13
(三)自由基與活性氧產生途徑 14
三、植物與環境逆境 15
四、種子發芽二級代謝物之生化代謝 17
參、實驗架構 22
肆、材料與方法 23
一、實驗材料 23
二、標準品 23
三、藥品和試劑 23
四、儀器設備 23
五、實驗方法 24
(一)發芽試驗 24
(一)發芽率計算 25
(三)一般成分分析 25
(四)脂肪酸組成分析 26
(五) 發芽芝麻之甲醇粗萃物製備 26
(六)芝麻油之甲醇粗萃物製備 27
(七)抗氧化成分分析 27
(八)抗氧化活性分析 28
伍、結果與討論 32
一、芝麻發芽期間發芽率及芽苗成長變化 32
二、芝麻發芽期間一般成分含量及脂肪酸組成的變化 33
三、芝麻經不同浸泡前處理對發芽期間發芽芝麻及芝麻油之抗氧化成分分析 36
(一) 發芽芝麻之總多酚含量的變化 36
(二)芝麻油之總多酚含量的變化 38
(三)芝麻油之lignans的變化 39
(四)芝麻油之γtocopherol含量的變化 42
四. 芝麻經不同浸泡前處理對發芽期間發芽芝麻及芝麻油之抗氧化活性分析 44
(一)發芽期間發芽芝麻清除DPPH自由基活性的表現 44
(二)發芽期間芝麻油清除DPPH自由基活性的表現 46
(三)發芽期間發芽芝麻還原力的表現 47
(四)發芽期間芝麻油還原力的表現 49
(五)發芽期間發芽芝麻螯合亞鐵離子的能力表現 50
(六)發芽期間芝麻油螯合亞鐵離子的能力表現 52
(七)發芽期間發芽芝麻ORAC(Oxygen Radical Absorbance Capacity)總抗氧化活性分析 52
(八)發芽期間芝麻油ORAC總抗氧化活性分析 54
陸、結論 56
柒、參考文獻 58
捌、表 74
玖、圖 89




表目錄
表 一、不同浸泡前處理對芝麻發芽期間芽苗生長的變化(cm)。 …… 74
表 二、不同浸泡前處理對芝麻種子發芽率的影響(%)。……………… 75
表 三、不同浸泡前處理對芝麻發芽期間一般成分乾基重的變化(%)。76
表 四、不同浸泡前處理對芝麻發芽期間的芝麻油脂肪酸組成分的變化 (%)。…………………………………………………………………………77
表 五、不同浸泡前處理對發芽期間lignans含量的變化(mg/100g oil)。…………………………………………………………………………78
表 六、不同浸泡前處理對發芽期間 compound A與compound B含量的變化 (Area)。………………………………………………………………79
表 七、不同浸泡前處理對芝麻發芽期間的芝麻油之γ-tocopherol含量變化(mg / 100g oil)。…………………………………………………………80表 八、不同浸泡前處理對芝麻發芽期間發芽芝麻DPPH自由基清除力之影響(%)。……………………………………………………………………81
表 九、不同浸泡前處理對芝麻發芽期間芝麻油DPPH自由基清除力之影響 (%)。……………………………………………………………………82
表 十、不同浸泡前處理對芝麻發芽期間發芽芝麻還原力之影響(μg ascorbic acid /g MeOH extract)。…………………………………………83
表 十一、不同浸泡前處理對芝麻發芽期間芝麻油還原力之影響(μg ascorbic acid/g MeOH extract)。……………………………………………84
表 十二、不同浸泡前處理對芝麻發芽期間發芽芝麻螯合力影響 (%)。85
表 十三、不同浸泡前處理對芝麻發芽期間芝麻油螯合力之影響(%)。 86
表 十四、不同浸泡前處理對芝麻發芽期間發芽芝麻ORAC總抗氧化能力影響(μmole TE / g MeOH extract)。………………………………………87
表 十五、不同浸泡前處理對芝麻發芽期間芝麻油ORAC總抗氧化能力之影響(μmole TE / g MeOH extract)。…………………………………………88



圖目錄
圖 一、不同浸泡前處理對芝麻發芽期間的發芽芝麻之總多酚含量變化 (mg gallic acid / g MeOH extract) 89
圖 二、不同浸泡前處理對芝麻發芽期間的芝麻油之總多酚含量變化 (mg gallic acid / g MeOH extract) 89
圖 三、芝麻油中lignans之HPLC-UV 290 nm 分析層析圖 90
圖 四、發芽第1天芝麻油中lignans之 HPLC-UV 290 nm 分析層析圖 90
圖 五、發芽第2天芝麻油中lignans之 HPLC-UV 290 nm 分析層析圖 91
圖 六、發芽第3天芝麻油中lignans之 HPLC-UV 290 nm 分析層析圖 91
圖 七、發芽第4天芝麻油中lignans之 HPLC-UV 290 nm 分析層析圖 92
圖 八、發芽第5天芝麻油中lignans之HPLC-UV 290 nm分析層析圖 92
圖 九、發芽第6天芝麻油中lignans之 HPLC-UV 290 nm 分析層析圖 93
圖 十、芝麻油中lignans之HPLC UV全波長分析層析圖 93


王宜倫、夢彩霞、李沙莉、李娜、宋芳芳。2010。緩/控釋肥料對芝麻生長發育及產量的影響。中國農學通報。26(2): 145-148。

王婉榆。2007。萃取方法及乾燥熱處理對蓮子心抗氧化能力表現之影響。台南科技大學生活應用科學系。台南。

李華,李佩洪,王曉宇,李勇。2008。抗氧化檢測方法的相關性研究。食品與生物技術學報,27:6-11。

朱德民 。1993。植物與環境逆境。國立編譯館主編出版。台北 。

並木滿夫。1996。機能性研究 新展開。食品科學。 218:18-25。

周玉青。2009。莨菪素抗氧化及抑制酪胺酸酶活性之探究。弘光科技大學 化妝品科技研究所。台中。

吳淳美。1979。食品中之氧化-還原系統及食品抗氧化劑。食品工業。11: 42-9。

邱毅超。2010。神秘果的抗氧化及對STZ誘導的高血糖老鼠血糖調節作用之研究。屏東科技大學生物科技研究所碩士論文。屏東。

陳奇慕。2009。蕎麥抗氧化能力探討及其保健飲品開發。國立嘉義大學食品科學暨生物藥學研究所碩士論文。嘉義。

陳奇慕、徐錫樑。2010。蕎麥不同溶劑萃取物之抗氧化能力及抗氧化成分分析。台灣農業化農學化與與食食品科學。48(2): 84-91。

陳宜孜。2005。溫度與pH 對不同品種山藥抗氧化特性及其儲存性蛋白質dioscorin 安定性之影響。靜宜大學食品營養學系碩士論文。台中。

曾家澤。2008。蘿蔔嬰、綠花椰菜芽及油菜芽甲醇萃取物之抗氧化活性研究。國立宜蘭大學食品科學系碩士班論文。宜蘭。

栗山健一和無類井建夫。1996。配糖體脂質過酸化抑制效果。Nippon Nogeikagaku Kaishi。70:161-167。

洪毓翔。2008。氮施用量與遮陰對番石榴葉酚類物質含量之影響。台灣大學食品科技研究所碩士論文。台北。

徐永鑫。2001。芝麻粕中lignans及lignan glycosides之分析及抗氧化性探討。台灣大學園藝學系研究所博士論文。台北。

徐海娥。2008。芝麻木酚素的提取及對糖尿病小鼠腎臟保護作用研究。南京醫科大學碩士論文。中國。

高馥君、李敏雄。1998。食品保存與抗氧化劑。食品工業。32(12): 17-24。

許煥祺。2004。糙米受不同光源照射發芽後其理化特性及抗氧化活性之探 討。國立中興大學食品科學系碩士論文。台中。

葉振福。2002。低溫對發芽稻米芽鞘蛋白質之影響。國立成功大學化學系碩士論文。台南。

黃思萍。2008。芝麻粕萃取物及其發酵物對老化促進小鼠抗氧化狀態及學習記憶之探討。靜宜大學食品營養研究所碩士論文。台中。

黃世偲。2009。不同浸泡前處理對芝麻發芽期間芝麻芽及芝麻油之抗氧化性影響。國立宜蘭大學食品科學系碩士班論文。宜蘭。

楊雅露。2006。蕎麥芽抗氧化及降血脂活性之研究。弘光科技大學生物科技研究所碩博士論文。台中。

劉英德。1988。種子生理學。五州出版社。台北。

劉伯康。1997。數種傳統食用植物抗氧化性之研究。國立中興大學食品科學系碩士論文。台中。

劉伯康、陳惠英、顏國欽。1999。數種傳統食用植物甲醇萃取物抗氧化性之研究。中國農業化學會誌。37(1): 105-116。

謝玉貞、林芳妘、蔣慕琰。2008。平原菟絲子種子發芽特性之探討。中華民國雜草會刊。29: 1-10。

謝立勇、林而達。2006。適應二氧化碳肥效作用的農業技術潛力分析。中國農業氣象。27(3): 161-166。

謝昆霖。2007。番木瓜果實水萃取物之抗氧化能力研究。靜宜大學食品營學系碩士論文。台中。

黎孝韻、曾國慶。2008。自由基及抗氧化物功能的探討。藥學雜誌,95: 95-103。

孫豫蘋。2009。乳酸發酵大白菜之製造及抗氧化特性研究。臺灣大學食品科學研究所博士論文。台北。

鄭玉馨。1981。淺談食品色素。科學月刊。12(12): 19-22。

羅明華、羅英、王璞。2010。水楊酸處理對乾旱脅迫下丹參幼苗抗氧化能力的影響。乾旱地區農業研究。28(4): 102-105。

Abou-Gharbia H.A., Shehata A.A.Y., Shahidi F. 2000. Effect of processing on oxidative stability and lipid classes of sesame oil. Food Research International. 33: 331-340.

Aljadi A.M. and Yusoff K.M. 2003. Isolation and identification of phenolic acids in Malaysian honey with antibacterial properties. Turkish Journal of Medical Sciences. 33: 229-36.

Amanatidou A., Smid E.J., Bennik M.H.J., Gorris L.G.M. 2001. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations. FEMS Microbiology Letters. 203:87-94.

AOCS. 1975. Official and tentative method. American oil chemists society. 3rd ed., Champaign II. 66.

Ashakumary L., Rouyer I., Takahashi Y., Ise T., Fukuda N., Aoyama T., Hashimoto T., Mizugaki M., Sugano M. 1999.

Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism. 48: 1303-1313.

Balasundram N., Sundram K., Samman S. 2006. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry. 99: 191-203.

Berges E. 1999. Importance of vitamin E in the oxidative stability of meat:organoleptic qualities and consequences. Ciheam-IAMZ. 6: 347-363.

Bewley J.D. 1997. Seed Germination and Dormancy. The Plant Cell. 9: 1055-1066.

Bondet V, Brand-Williams W, Berset C. 1997. Kinetics and mechani-sms of antioxidant activity using the DPPH free radical method. Lebensm-Wiss Technology. 30(6): 609-615.

Brito O.J. and Nunez N. 1982. Evaluation of sesame flour as a complementary protein source for combinations with soy and corn flours. Journal of Food Science. 47: 457-460.

Buettner G.R. 1993. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol and ascorbate. Archives of Biochemistry and Biophysics. 300: 535-543.

Burguieres E., McCue P., Kwon Y-I. and Shetty, K. 2007. Effect of vitamin C and folic acid on seed vigor response and phenolic-linked antioxidant activity. Bioresource Technology. 98: 1393-1404.

Cao G., H.M. Alessio, and R.G. Cutler. 1993. Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biology and Medicine. 14: 303-311.

Cao, G., Sofic, E., Prior, R.L. 1996. Antioxidant capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry. 44:3426-343.

Chan K.M. and Decker E.A.. 1994. Endogenous skeletal muscle antioxidants. Critical Reviews in Food Science and Nutrition. 34: 403-426.

Chavali S.R., Utsunomiya T., Forse R.A. 2001. Increased survival after cecal ligation and puncture in mice consuming diets enriched with sesame seed oil. Critical Care Medicine. 29: 140-143.

Chen H.Y and Yen G.C. 1998. Free Radicals, Antioxidant Defenses and Human Health. Nutrition Sciences Jourmal. 1998 Vol 23. No.1: 105-121.

Chen Y.C., Liang Y.C., Lin-Shiau S.Y., Ho C.T., Lin J.K. 1999. Inhibition of TPA induced protein kinase C and transcriptionactivator protein-1 binding activities by theaflavin-3, 3’-diagallate from black tea in NIH3T3 cells. Journal of Agricultural and Food Chemistry. 47: 1416-1421.

Chen P.R., Chien. K.L., Su T.C., Chang C.J., Liu T.L., Tsai C.E. 2005. Diet with sesame reduce serum cholesterol and enhance antioxidant capacity in hypercholesterolemia. Nutrition Research. 25: 559-567.

Chirinos R., Rogez H., Campos D., Pedreschi R., Larondelle Y. 2007. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ru´ız & Pav´on) tubers. Separation and Purification Technology. 55: 217-225.

Christel, Q.D., Bernard, G., Jacques, V., Thierry, D., Claude, B., Michel, L., Micheline, C., Jean, C.C., Francois, B., Francis, T. 2000. Phenolic compounds and antioxidant activities of buckwheat (Esculentum 75 fagopyrum Moench) hulls and flour. Jourmal of Ethnopharmacol. 72:35-42.

Crews C., Hough P., Brereton P., Godward J., Lees M., Guiet S., Winkelmann W. 2006. Quantitation of the main constituents of some authentic sesame seed oils of different origin. Journal of. Agricultural and Food Chemistry. 54: 6266-6270.

Decker E.A. and Mei L.. 1996. Antioxidant mechanisms and applications in muscle foods. Recip. Meat Confer Process. 49: 64-72.

Decker E.A. and Welch B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agriculture and Food Chemistry. 38: 674-677.

Dixon RA, Paiva NL. 1995. Stress-lnduced Phenylpropanoid Metabolism. Society Plant Physiology. 7: 1085-1097.

Duenas M., Hernandez T., Estrella I., Fernandez D. 2009. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chemistry. 117 : 599-607.

Dziezak, J. D. 1986. Preservatives:Antioxidants-the ultimate answer to oxidation. Food Technology. 40: 94-102.

Dzlezak J.D. 1986. Antioxidants: the ultimate answer to oxidation. Food Technology. 40(9): 94-102.

Evans H.M. and Bishop K.S. 1922. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science. 56: 650-651.

Fang YZ, Yang S, Wu G. 2002. Free radicals, antioxidants, and nutrition. Nutrition. 18 (10):872-879.

Frankel E.N. 1996. Antioxidants in lipid foods and their impact on food quality. Food Chemistry. 57: 51-55.

Guttmann R.D., Caudrelier P., Alberici G., Touraine J.-L. 1997. Pharmacokinetics,foreign protein immune response, cytokine release, and lymphocyte subsets in patients receiving thymoglobuline and immunosuppression. Transplantation Proceedings. 29(7): 24s.

Hahm T-S., Park S-J., Lo Y.M. 2009. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresource Technology. 100: 1643-1647.

Halliwell B. 1989. Oxidant and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disase, traumatic brain injury or stroke? Acta Neurological Scandinavical. Suppl.126: 23-33.

Halliwell B. 1994. Free radicals and antioxidants: A personal view. Nutrition Reviews. 52(2): 253-265.

Harris S.E., E. Huff-Lonergan, S.M. Lonergan, W.R. Jones and D. Rankins. 2001. Antioxidant status affects color stability and tenderness of calcium chloride-injected beef. Journal of Animal Science. 79: 666-677.

Helzlsouer K.J., Huang H.Y., Alberg A.J., Hoffman S., Burke A., Norkus E.P., Morris J.S., Comstock G.W. 2000. Association Between alpha-Tocopherol, gamma-Tocopherol, Selenium, and Subsequent Prostate Cancer. Journal of the National Cancer Institute. 92: 2018-2023.

Hemalatha S, Ghafoorunissa. 2007. Sesame lignans enhance the thermal stability of edible vegetable oils. Food Chemistry. 105: 1076—1085.

Hichem H, Mounir D, Naceur E.A. 2009. Differential responses of two maize (Zea mays L.) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages. Industrial Crops and Products. 30: 144-151.

Hichem H, Naceur E.A., Jean P.G., Mounir D. 2010. Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Industrial Crops and Products. 31: 122-130.

Hirose N., Inoue T., Nishihara K., Sugano M., Akimoto K., Shimizu S. and Yamada H. 1991. Inhibition of cholesterol absorption and synthesis in rats by sesamin. Journal of Lipid Research. 32: 629-638.

Huff-Lonergan E. and S.M. Lonergan. 2005. Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Science. 71: 194-204.

Jacob RA. 1995. The integrate antioxidant system. Nutrition Reviews. 15 (5): 755-766.

Jiang Q., Elson-Schwab I., Courtemanche C., Ames B.M. 2000. γ-tocopherol and its major metabolite, in contrast to α-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proceedings of the National Academy of Sciences USA. 97: 11494-11499.

Jing R, Mans J.E., Stampfer M.J.,Liu S,Willett W.C., Hu F.B. 2002. Nut and peanut butter consumption and risk of type 2 diabetes in women. Journal of the American Medicial Association. 288: 2554-2560.

Julkunen-Titto R. 1985. Phenolic constituents in the levels of northern willows:Methods for precursors of clarified apple juice sediment. Journal of Food Science. 33: 254-257.

Kamal-Eldin A, Pettersson D and Appelqvist LA. 1995. Sesamin (a compound from sesame oil) increases tocopherol levels in rats fed adlibitum. Lipids. 30: 499-505.

Kanny G, De Hauteclocque C and Moneret-Vautrin DA. 1996. Sesame seed and sesame seed oil contain masked allergens of growing importance. Allergy. 51: 952-957.

Kitts D. 1997. An evaluation of the multiple effects of the antioxidant vitamins. Trends in Food Science Technology.

Lamhamdi M., Bakrim A., Aarab A., Lafont R.and Sayah F. 2011. Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Plant Biology and Pathology. 334: 118-126.

Lee J, Lee Y, Choe E. 2008. Effects of sesamol, sesamin, and sesamolin extracted from roasted sesame oil on the thermal oxidation of methyl linoleate. LWT-Food Science and Technology. 42: 1871-1875. 8: 198-203.

Lee SW, Jeung MK, Park MH, Lee SY, Lee JH. 2009. Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chemistry. 118: 681-685.

Levitt, J. 1980. Response of plants to environmental stresses. Academic Press. New York. Vol.Ⅰ, Vol.Ⅱ.

Levy J., Danilnko M. and Sharoni Y. 1997. The tomato carotenoid lycopene and cancer. In Food Factors for Cancer Prevention. pp. 969-978.

Liebler D.C. 1993. The role of metabolism in the antioxidant function of vitamin E. Critical Reviews in Toxicology. 23: 147-169.

Liu Q., M.C. Lanari and D.M. Schaefer. 1995. A review of dietary vitamin E supplementation for improvement of beef quality. Journal of Animal Science. 73: 3131-3140.

Mathew S., Abraham T.E. 2006. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chemistry Toxicology. 44(2): 198-206.

Meir S., Kanner J., Akiri B., Philosoph H.S. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various sencescing leaves. Journal of Agriculture and Food Chemistry. 43: 1813-1819.

Mercier Y., P. Gatellier, A. Vincent and M. Renerre. 2001. Lipid and protein oxidation in microsomal fraction from turkeys: Influence ofdietary fat and vitamin E supplementation. Meat Science. 58: 125-134.

Mitsumoto M., R.N. Arnold, D.M. Schaefer and R.G. Cassens. 1993. Dietary versus postmortem supplementation of vitamin E on pigment and lipid stability in ground beef. Journal of Animal Science. 71: 1812-1816.

Moazzami AA, Kamal-Eldin A. 2006. Sesame seed is a rich source of dietary lignans. Journal of the American Oil Chemists' Society. 83: 719-723.

Moazzami, A. A., Andersson, R. E., and Eldin, K. A. 2006. HPLC analysis of sesaminol glucosides in sesame seed. Journal of Agriculture and Food Chemistry. 54 (3): 633-638.

MuCue P., Zheng Z., Pinkham J.L., Shetty K. 2000. A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Process Biochemistry. 35: 603-613.

Murota K and Terao J. 2003. Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Archives of Biochemistry and Biophysics. 417:12-17.

Nakai M., Harada M., Nakahara K., Akimoto K., Shibata H., Miki W., Kiso Y. 2003. Novel antioxidative metabolites in rat liver with ingested sesamin. Journal of Agricultural and Food Chemistry. 51: 1666-1670

Namiki M. 1990. Antioxidants/antimutagens in food. Reviews Food Society. 29: 213-300.

Namiki M. 1995. The chemistry and physiological functions of sesame. Food Rviews Sience. 11: 281-229.

Nawar W.W. 1985. Lipid in “food chemistry” edited by fennema. O.R. Marcel Dekker INC. New York. 139-244.

Niki E., A. Kawakami, M. Saito, Y. Yamamoto, J. Tsuchiya and Y. Kamiya. 1985. Effect of phytyl side chain of vitamin E on its antioxidant activity. Journal of Biological Chemistry. 260: 2191-2196.

Niki E. 1991. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. American Journal of Clinical Nutrition. 54: 1119S-1127S.

Nomura A.M., Stemmermann G.N., Lee J., Craft N.E. 1997. Serum micronutrients and prostate cancer in Japanese Americans in Hawaii. Cancer Epidemiol Biomarkers Preview. 6: 487-491.

Ohashima H, Gilibert I, Bianchini F. 1999. Induction of DNA strand brealage and base oxidation by nitroxyl anion theough hydroxyl radical production. Free Radical Biology and Medicine. 26 (10): 1305-1313.

Ono E., Nakai M., Fukui Y., Tomimori N., Fukuchi-Mizutani M., Saito M., Satake. H., Tanaka. T., Katsuta M., Umezawa T., Tanaka Y. 2006. Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Japan.

O’Sullivan, M.G., D.V. Byrne, J.H. Nielsen, H.J. Andersen and M. Martens. 2003. Sensory and chemical assessment of pork supplemented with iron and vitamin E. Meat Science. 64: 175-189.

Oyaizu M. 1986. Studies on products of browning reaction:antioxidative activities of products of browning reaction prepared from glucosamine. Japonesse. Journal of Nutrition. 44: 307-315.

Ou B., Hampsch-Woodill M., Prior R.L. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry. 49: 4619-4626.

Padilla F.C., Rincón A.M., Bou-Rached L. 2008. Polyphenol content and antioxidant activity of several seeds and nuts. Hivos Latinoamericanos De Nutrición. 58: 303-308.

Prior, R.L., Wu, X., Schaich, K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry. 53:4290-4302.

Randhir R. and Shetty K. 2004a. Microwave-induced stimulation of L-DOPA phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson's diet. Process Biochemistry. 39: 1775-1784.

Randhir R., Lin Y-T., Shetty K. 2004. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry. 39: 637-646.

Rice-Evans C. 2001. Flavonoid antioxidants. Curr Medicine Chemisty. 8: 797-807.

Rowe L.J., Maddock K.R., Lonergan S.M. and Huff-Longergan E. 2004a. Influence of early postmortem protein oxidiation on beef quality. Journal of Animal Science. 82: 785-793.

Rowe L.J., Maddock K.R., Lonergan S.M. and Huff-Longergan E.. 2004b. Oxidative environments decrease tenderization of beef steaks through inactivation of μ-calpain. Journal of Animal Science. 82: 3254-3266.

Sato. 2003. Effects of different kind of sesame matrials on the physical properties of gomatofu (sesame tofu). Food Hydrocolloids. 17: 901-906.

Schmidt S. and Pokorny J. 2005. Potential Application of Oilseed as Sources of Antioxidants for food lipids-a Review. Czech Journal of Food Sciences. 23: 93-102.

Scott E.S., Laura U.G., Maria M-L, Mike P. and Dean D.P. 2004. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell. 16: 1419-1432.

Seo H.C., Suzuki M., Ohnishi-kameyama M., OH M-J., Kim H-R., Kim J-H., Nagata T. 2003. Extraction and identification of antioxidant components from Artemisia capillaris herba. Plant Foods for Human Nutrition. 58:1-12.

Shahidi F. and Wanasundara P.K.J.P.D. 1992. phenolic antioxidants. Critical Reviews in Food Science and Nutrition. 32: 67-103.

Shetty P., Atallah M.T., Shetty K. 2002. Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba. Process Biochemistry. 37: 1285-1295.

Shetty P., Atallah M.T., Shetty K. 2003. Stimulation of total phenolics L-DOPA and antioxidant activity through proline-linked pentose phosphate pathway in response to proline and its analogue in germinating fava beans (Vicia faba). Process Biochemistry. 38: 1707-1717.

Shetty K. and Wahlqvist M. 2004. A model for the role of proline-linked pentosephosphate pathway in phenolic phytochemical biosynthesis and mechanism of action for human health and environmental applications. Asia Pacific Journal of Clinical Nutrition. 13:1-24.

Singleton V.L., Orthofer R, Lamuela-Raventos R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299: 152-178.

Stat M, Ranarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. 1996. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. Journal of Agricultural and Food Chemistry. 44(1): 37-41.

Sies H. 1991. Oxidative stress: from basic research to clinical application. American Journal of Medicine. 91(1): 31S-38S.

Simic M. G., K. A. Taylor, J. F. Ward and C. von Sonntag(red). 1988. Oxygen radicals in biology and medicine. Plenum Press. New York.

Six P. 1994. Current research in natural food antioxidants. INFORM. 5(6): 679.

Tashiro T., Fukuda Y., Osawa T., Namiki M. 1990. Oil and minor components of sesame (sesamum indicum L.) strains. Journal of the American Oil Chemists' Society. 67: 508-511.

Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Hawkins B.D. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis. 19:669-675.

Tiidus P.M. and Houston M.E. 1995. Vitamin E status and response to exercise training. Sports Medicine. 20: 12-23.

Verma S.P., Sahoo J. 2000. Improvement in the quality of ground chevon during refrigerated storage by tocopherol acetate preblending. Meat Science. 56: 403-413.

Wang H., Cao G., Prior R.L. 1996. Total Antioxidant Capacity of Fruits. Journal of Agricultural and Food Chemistry. 44:701-705.

Wang H., Cao G. and Prior R. 1997. Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry. 45: 304-309.

Wang X. and Quinn P.J. 1999. Vitamin E and its function in membranes. Progress Lipid Research. 38: 309-336.

Wang S.Y. and Lin H.S. 2000. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry. 48: 140-146.

Wong C.C., Li H.B., Cheng K.W., Chen F. 2006. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry. 97: 705-711.

Wu W.H. 2007. The contents of lignans in commercial sesame oils of Taiwan and their changes during heating. Food Chemistry. 104: 341-344.

Yamashita K., Konohara Y., Katayama K. and Namaki M. 1992 . Sesame seed lignans and tocopherol act synergistically to produce vitamin E activity in rats. Nutrition and Metabolism. 25: 240-247.

Yoshida H and Kajimoto. 1994. Microwave heating affects composition and antioxidative stability of sesame (Sesamun indicum) oil. Journal Food Sciences. 59: 613-662.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top