(44.192.66.171) 您好!臺灣時間:2021/05/18 00:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄭文育
研究生(外文):Cheng,Wenyu
論文名稱:增強載子侷限效應之氮化銦鎵/氮化鎵發光二極體特性研究
論文名稱(外文):Investigation on the InGaN/GaN Light Emitting Diodes with Enhanced Carrier Confinement Effect
指導教授:鄭岫盈
指導教授(外文):Cheng, Shiouying
口試委員:劉文超許渭州蔡榮輝常文龍鄭岫盈
口試委員(外文):Liu, WenchauHsu, WeichouTsai, JunghuiChang WenlongCheng, Shiouying
口試日期:100/06/29
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:98
中文關鍵詞:發光二極體氮化銦鎵多重量子井
外文關鍵詞:light-emitting diodesInGaNmultiple-quantum wellδ-doped
相關次數:
  • 被引用被引用:0
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:3
在本論文中,透過美國SILVACO公司所開發之TCAD軟體,來探討二維光電元件之電學、光學與熱學等物理特性。藉由Atlas元件模擬軟體設計一主動區截面尺寸為300 μm x300 μm的藍光氮化銦鎵/氮化鎵發光二極體元件,對此發光二極體做詳細的分析、探討與研究,包含著發光功率、發光頻譜、能帶圖、電場分布、電子與電洞濃度分布及複合率等物理機制與光學特性。由於我們設計的藍光InGaN發光二極體,採用異質接面多重量子井結構與氮化鋁鎵材料做為電子阻擋層,可使藍光InGaN發光二極體元件能得到良好的載子侷限效應。
在本論文第一章中,簡單的介紹發光二極體的發展史及研究動機。第二章為介紹發光二極體的基本原理與特性,以及完整的討論III-V氮化物材料的特性。第三章為介紹本論文所使用的TCAD理論分析輔助軟體,並將模擬時,所使用到之模型做完整的討論。第四章為討論元件中各三五族氮化物材料之物理參數設定與分析,並以研究主題可分為兩大部分,首先,我們設計一多量子井結構藍光InGaN發光二極體,並改變其各層之摻雜濃度,且有系統的分析電子阻擋層、能障層與發光層之摻雜濃度,對藍光InGaN發光二極體元件之影響與找出各層摻雜濃度之最佳化。第二部分,將藍光InGaN發光二極體原始結構中,由能障層與量子井所組成之主動區,利用Si δ-doped (n+) GaN/InGaN 結構之方法,來探討與有系統的分析是否能夠增強主動層量子井中的載子侷限效應。最後,第五章為論文做一完整結論。

In these studies, the state-of-the-art two-dimensional device simulation tool, ATLAS, from SILVACO is being evaluated for the purpose of studying light-emitting diodes (LEDs). It predicts the electron behavior of specified semiconductor structures, and provides insight into the internal physical mechanisms associated with device operation.
We designed the active layer area is 300 μm X 300 μm in blue InGaN/GaN multiple-quantum well (MQW) light-emitting diodes, using the SILVACO ATLAS tool, the two-dimensional device simulation package ATLAS was used to theoretically analyze physical device characteristic. Other important physical mechanisms and optical properties, such as luminescent power, electroluminescence intensity, energy band, electric field, carrier concentration, and recombination rate were also investigated in this study.
First, doping of the electron-blocking, barrier and active region layers plays a crucial role in the efficiency of blue InGaN/GaN light-emitting diodes. The carrier concentration characteristics of InGaN/GaN LEDs are systematically studied.
Finally, the proposed structures with Si delta-doped GaN/InGaN are numerically simulated. In the meantime, a systematic analysis on the critical physical mechanisms relevant to the improvement of the optical performance. The carrier confinement effect has enhanced effectively with Si delta-doped GaN/InGaN structure.

誌謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XI
Chapter 1 緒論 1
1-1 緒論 1
1-2 研究動機 5
1-3 論文架構 6
Chapter 2 理論介紹與討論 7
2-1 基本原理 7
2-1-1 LED的基本工作原理 7
2-1-2 輻射復合與非輻射復合 9
2-1-3 LED的效率 16
2-2 III-V氮化物材料基本介紹 21
2-2-1 晶體結構 21
2-2-2 應力 23
2-3 極化效應 26
Chapter 3 理論分析輔助軟體及物理模型 30
3-1 前言 30
3-2 半導體基本方程式 33
3-2-1 帕松方程式與電子–電洞連續方程式 33
3-2-2 擴散–漂移模型 34
3-2-3 能量平衡傳輸模型 36
3-3 載子分佈的基本原理 37
3-3-1 費米-狄拉克與波茲曼分佈 37
3-3-2 有效態位密度 38
3-3-3 本質載子濃度 39
3-3-4 通用能隙模型 40
3-4 物理模型 41
3-4-1 遷移率 41
3-4-2 載子產生復合 42
3-4-3 碰撞游離 48
3-4-4 介電常數 49
3-4-5 應力 50
3-4-6 極化場 51
Chapter 4 元件分析與探討 52
4-1 前言 52
4-2 發光二極體元件結構 53
4-3 物質參數設定 55
4-3-1 能帶間隙計算 55
4-3-2 極化電荷計算 56
4-3-3 其他參數設定 57
4-4 各層濃度對氮化銦鎵發光二極體之影響 59
4-4-1 元件結構設計 59
4-4-2 結果與分析 60
4-4-3 結論 62
4-5 利用Si delta-doped GaN/InGaN結構增強載子侷限效應 63
4-5-1 元件結構設計 63
4-5-2 結果與分析 65
4-5-3 結論 78
Chapter 5 總結 79
5-1 總結 79
參考文獻 80

[1]E. Fred Schubert, Light-emitting diodes, Second edition, 2006.
[2]H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol.48, pp.353-355, 1986.
[3]H. Amano, M.Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy elecron beam irradiation,” Jpn. J. Appl. Phys., Vol.28, pp. L2112-L2114, 1989.
[4]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L139-L142, 1992.
[5]S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-enmitting diodes,” Jpn. J. Appl. Phys., vol. 34, pp. L1332-L1335, 1995.
[6]S. Chichobu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multi-quantum well structures,” Appl. phys. Lett., Vol. 69, pp. 4188-4190, 1996.
[7]Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Narukawa, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells” Phys. Rev. B, vol. 55, pp. R1938-R1940, 1997.
[8]P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugang, and Y. Aoyagi, “Determination of photoluminescence mechanism in InGaN quantum wells,” Appl. Phys. Lett., Vol. 75, pp. 2241-2243, 1999.
[9]T. Wang, H. Saeki, J. Bai, T. Shirahama, M. Lachab, and S. Sakai, “Effect of silicon doping on the optical and transport properties of InGaN/GaN multiple-quantum-well structures,” Appl. Phys. Lett., Vol. 76, pp. 1737-1739, 2000.
[10]W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev., vol. 87, pp. 835-842, 1952.
[11]K. Uchida, T. Tang, S. Goto, T. Mishima, A. Niwa, and J. Gotog, “Spiral growth of InGaN/InGaN quantum wells due to Si doping in the barrier layers,” Appl. Phys. Lett., Vol. 74, pp. 1153-1155, 1999.
[12]G. P. Agrawal and N. K. Dutta, Long Wavelength Semiconductor Lasers, Van Nostrand Reinhold Co. Inc., New York, 1986.
[13]J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, San Diego: Academic Press, 2003.
[14]J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, Cambridge: Cambridge Univ. Press, 2003, p. 28.
[15]T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys., vol. 37, pp. L398–L400, 1998.
[16]蔡妙嬋, “氮化銦鎵藍光發光二極體極化效應之研究”, 國立彰化師範大學光電科技研究所碩士論文, 2008.
[17]E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, “Spontaneous and piezoelectric polarization in nitride heterostructures,” J. Vac. Sci. Technol. B, Vol. 17, pp. 1742-1749, 1999.
[18]Th. Gessmann, J. W. Graff, Y. L. Li, E. L. Waldron, and E. F. Schubert, “Ohmic contact technology in III nitrides using polarization effects of cap layers,” J. Appl. Phys., Vol. 92, pp. 3740-3744, 2002.
[19]M. R. Pinto, S. R. Conor, and W. D. Robert, PISCES2: Poisson and Continuity Equation Solver, Stanford Electronics Laboratory Technical Report, 1984.
[20]S. Selberherr, Analysis and Simulation of Semiconductor Devices, Wien, New York: Springer-Verlag, 1984.
[21]Z. Yu and R. W. Dutton, SEDAN III: A Generalized Electronic Material Device Analysis Program, Program Manual, Stanford Electronics Laboratory Technical Report, Stanford University, 1985.
[22]W. B. Joyce and R. W. Dixon, “Analytic Approximation for the Fermi Energy of an ideal Fermi Gas,” Appl. Phys Lett., Vol. 31, pp. 354-356, 1977.
[23]S.M. Sze, Physics of Semiconductor Devices, Wiley, 1981.
[24]W. Shockley and W. T. Read, “Statistics of the Recombination of Holes and Electrons,” Phys. Rev., vol.87, pp. 835-842, 1952.
[25]R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev., vol. 87, pp. 387-387, 1952.
[26]K. Fujii, Y. Tanaka, K. Honda, H. Tsutsu, H. Koseki, and S. Hotta., “Process techniques of 15 inch full color and high resolution a-Si TFT LCD,” 5th Int. MicroProcess Conf., Kawasaki, 1992.
[27]M.E. Law, E. Solley, M. Liang, and D. E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility,” IEEE Electron Device Lett., Vol. 12, pp. 401-403, 1991.
[28]D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n±p silicon diodes,” IEEE Trans. Electron Devices, Vol. 29, pp. 284-291, 1982.
[29]J. Dziewior and W. Schmid, “Auger coefficient for highly doped and highly excited silicon,” Appl. Phys. Lett., Vol. 31, pp. 346-348, 1977.
[30]D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent bandgap narrowing in n- and p- type silicon,” Solid-State Elect., Vol. 35, pp. 125-129, 1992.
[31]A. R. Beattie and A. M. White, “An analytical approximation with a wide range of applicability for electron initiated auger transitions in narrow-gap semiconductors,” J. Appl. Phys., Vol. 79, pp. 802-813, 1996.
[32]M. J. Kerr and A. Cuevas, “General parameterization of auger recombination in crystalline silicon,” Appl. Phys., Vol. 91, pp. 2473-2480, 2002.
[33]L. Huldt, N. G. Nilsson, and K. G. Svantesson, “The temperature dependence of band-to-band Auger recombination in Silicon,” Appl. Phys., Vol. 35, pp.776-777, 1979.
[34]R. Hacker, and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in Silicon,” J. Appl. Phys., Vol. 75, 1994.
[35]A. S. Grove, Physics and Technology of Semiconductor Devices, Wiley, 1967.
[36]S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, and P. V. Dressendorfer, “Device modeling of ferroelectric capacitors”, J. Appl. Phys., Vol. 68, pp. 6463-6471 , 1990.
[37]I. Vurgaftman and J. R. Meyer, “Band parameters for III-V compound semiconductors and their Alloys,” App. Phy., Vol. 89, pp. 5815-5875, 2001.
[38]J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, UCSB: Academic Press, 2003, p. 22.
[39]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterosturctures,” J. Appl. Phys., Vol. 87, pp. 334-344, 2000.
[40]J.J. Vos, “Colorimetric and photometric properties of a 2-deg fundamental observer,” Color Res., Appl. Vol. 3, pp.125, 1978.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top