(3.236.122.9) 您好!臺灣時間:2021/05/12 20:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳龍
研究生(外文):Chia-Long Lin
論文名稱:雙閘極場效電晶體元件模型的實現與應用
論文名稱(外文):Implementation and application of a double-gate MOSFET compact model
指導教授:江孟學鄭岫盈
指導教授(外文):Chiang, MenghsuenCheng, Shiouying
口試委員:江孟學鄭岫盈譚仕煒鄭國順施東河
口試委員(外文):Chiang, MenghsuenCheng, ShiouyingTan, ShihweiCheng, KuoshengShih, Dongher
口試日期:100/6/29
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:73
中文關鍵詞:雙閘極場效電晶體Verilog-A元件模型
外文關鍵詞:double-gateVerilog-Acompact model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:563
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
計算機補助設計(computer-aided design;CAD)可用來預測電路實現上的問題,而SPICE最常用於電路模擬,因此,SPICE所建立的電路模型在電路模擬上是非常重要。近幾年,先進元件開發與設計,以多閘極場效電晶體為主要研究方向之一,最主要是希望能夠改善單閘極金氧半場效電晶體(Bulk MOSFET)微縮後的短通道效應之問題,但在SPICE元件模型方面,雖現今許多研究單位投入此領域,而多重閘極場效電晶體(Multi-gate MOSFET)之SPICE元件模型不如單閘極金氧半場效電晶體(Bulk MOSFET)如此完整,目前仍沒有一套標準化的模型電路在SPICE可提供商業使用,因此,在現階段開發一個具有物理特性及預測能力的多重閘極電晶體元件模型電路是必要的。
本論文實現雙閘極場效電晶體(double gate MOSFET)之SPICE元件模型,是採用Verilog-A軟體所完成的,此雙閘極場效電晶體元件模型是根據波松方程式(Poisson’s equation)在假設通道未摻雜情況下所建立的,再從波松方程式(Poisson’s equation)推導出通道的表面電位與中心電位之間關係式,之後利用數值分析之牛頓迭代法計算表面電位與中心電位,可提供通道電流方程式與電荷電流方程式計算電晶體電流,同時加入了物理修正模組,最後元件模型會與元件的數值模擬結果做進一步的驗證,以確保元件模型的可靠性,同時也提供元件模型參數可使電路設計者做適當的調整,本論文之雙閘極場效電晶體元件模型,預期可帶給積體電路的設計者,利用本模型進行電路設計的技術開發。

Computer-aided design (CAD) is useful for early development of integrate circuits (ICs). SPICE is commonly used in circuit design. In circuit simulation, an analytical and physics-based compact model plays an important role in predicting performance and also issues. Nowadays, there are still no standard multi-gate MOSFETs compact models available in commercial tools.
In this paper, we successfully developed a compact model which is focused on undoped symmetric double-gate (DG) MOSFETs using Verilog-A. Starting from Poisson’s equation solved for the undoped channel, surface and center potentials are then calculated by Newton iteration. An analytical drain current expression is derived from Pao-Sah’s double integral method. The model provides flexible parameters and is completely compatible with SPICE-like simulators.

誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 IX
Chapter 1 前言 1
1.1 多重閘極電晶體元件介紹 2
1.2 研究動機 3
1.3 Verilog-A簡介 4
1.4 章節架構 5
Chapter 2 以Verilog-A進行雙閘極場效電晶體元件模型開發 6
2.1 雙閘極電晶體元件的結構與特性 6
2.2 雙閘極電晶體元件之模型架構 7
2.2.1 電位計算模組 9
2.2.1.1 波松方程式之假設與模型推導 9
2.2.1.2 以數值分析方法求解電位值 10
2.2.2 通道電流模組 13
2.2.3 電荷電流模組 15
2.3 加入物理修正模組之雙閘極電晶體元件模型 16
2.3.1 有效遷移率 17
2.3.2 汲極與源極之串聯電阻 18
Chapter 3 短通道效應模組 19
3.1.1 汲極引致能帶下降效應之估算模組 19
3.1.2 次臨界斜率之估算模組 21
Chapter 4 元件模型之驗證 26
4.1 模型參數取得 28
4.2 模型與實際元件之擬合方法 31
4.3 擬合結果之分析 38
4.3.1 Synopsys Taurus的雙閘極元件模型之擬合比較 38
4.3.2 實際元件的量測的電氣特性曲線圖之擬合比較 42
Chapter 5 結論 45
附錄 A 電位計算方程式之推導 46
附錄 B 二維電位方程式之推導 49
附錄 C 符號表 54
參考文獻 58

[1]Yiming Li, Hung-Mu Chou, and Jam-Wem Lee, “Investigation of Electrical Characteristics on Surrounding-Gate and Omega-Shaped-Gate Nanowire FinFETs,” IEEE Trans. Nanotechnology, Vol. 4, no. 5, pp. 510-516, Sep. 2005.
[2]Jong-Tae Park, Jean-Pierre Colinge, and Charlos H. Diaz, “Pi-Gate SOI MOSFET,” IEEE Electron Device Letters, Vol. 22, no. 8, pp. 405-406, Aug. 2001.
[3]D. Munteanu, J. L. Autran, V. Ferlet-Cavrois, P. Paiilet, J. Baggio, and K. Castellani, “3D Quantum Numerical Simulation of Single-Event Transients in Multiple-Gate Nanowire MOSFETs,” IEEE Transactions on Nuclear Science, Vol. 54, no. 4, pp. 994-1001, Aug. 2007.
[4]Accellera, “Verilog-AMS language reference manual version2.2, November 2004,” available online: http://www.accelera.org/home.
[5]廖翊博, “運用Verilog-A 實現的相變化記憶體溫度變化模型,” 國立宜蘭大學研究所論文。
[6]夏源斌, “Verilog-A語言的涵蓋率測量之研究,” 國立中央大學碩士論文。
[7]劉守恩, “非對稱性雙閘極電晶體的臨界電壓模型,” 國立清華大學研究所論文。
[8]Yuan Taur, “An Analytical Solution to a Double-Gate MOSFET with Undoped Body,” IEEE Electron Device Letters., Vol. 21, no. 5, pp. 245-247, May 2000.
[9]Yuan Taur, Xiaoping Liang, Wei Wang, and Huaxin Lu, “A Continuous, Analytic Drain Current Model for DG MOSFETs,” IEEE Electron Device Letters, Vol. 25, no. 2, pp. 107-109, Feb. 2004.
[10]Yuan Taur and Tak H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press 1998.
[11]Ron Larson, Robert P. Hostetler, and Bruce H. Edwards, Calculus(8th). U.S.A: Houghton Mifflin Company 2006.
[12]Adelmo Ortiz-Conde, Francisco J. Garcia Sanchez, and Juan Muci, “Rigorous analytic solution for the drain current of undoped symmetric dual-gate MOSFETs,” Solid-State Electronics, Vol. 49, no. 4, pp. 640-647,Jan. 2005.
[13]Prerret R. F., and Shields J. A., “Simplified long-channel MOSFET theory,” Solid-State Electronics, Vol. 26, pp. 143-147, June 1983.
[14]Pao H. C., and Sah C. T., “Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors,” Solid-State Electronics, Vol. 9, pp. 927-937, May 1966.
[15]Sun S. C. and Plummer James D., “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Journal of Solid-State Circuits, Vol. SC-15, no. 4, pp. 562-567, Aug. 1980.
[16]Surya Veeraraghavan, and Jerry G. Fossum, “A physical short-channel model for the thin-file SOI MOSFET applicable to device and circuit CAD,” IEEE Trans. on electron devices, Vol. 36, no. 11, pp. 1866-1875, Nov. 1988.
[17]Xiaoping Liang, and Yuan Taur, “A 2-D analytical solution for SCEs in DG MOSFETs,” IEEE Trans. on electron devices, Vol. 51, no. 8, pp. 1385-1391, Aug. 2004.
[18]林政男, “多重閘極電晶體受雜散摻雜影響之分析,” 國立宜蘭大學研究所論文。
[19]Taurus-Device ver: X-2005.10, User Guide Synopsys Inc., Oct. 2005.
[20]Julie Widiez, Thierry Poiroux, Maud Vinet, Mireille Mouis and Simon Deleonibus, “Experimental comparison between sub-0.1- m ultrathin SOI single- and double-gate MOSFETs: performance and mobility,” IEEE Trans. Nanotechnology, Vol. 5, no. 6, pp. 643-648, Nov. 2006.
[21]D.M. Caughey, R.E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE, Vol. 55, pp 2192-2193, Dec. 1967
[22]Donald A. Neamen, Fundamentals of semiconductor physics and devices. Mc Graw Hill Companies, Inc. 2003.
[23]C. Kampen, A. Burenkov, J. Lorenz, and H. Ryssel, “Alternative source/drain contact-pad architectures for contact resistance improvement in decanano-scaled cmos devices,” in Proc. 9th Int. Conf. Ultimate Integration of Silicon ULIS 2008, pp. 179–182, March 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔