跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 12:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林欣諭
研究生(外文):Lin, Hsinyu
論文名稱:龍眼殼與荔枝殼不溶性纖維理化性質及抗氧化能力之研究
論文名稱(外文):Studies On The Physicochemical Properties And Antioxidant Activities Of Insoluble Fibers From Dimocarpus Longan Hull And Litchi Chinensis Hull
指導教授:黃雅玲黃雅玲引用關係
指導教授(外文):Huang, Yaling
口試委員:許成光黃書政
口試日期:100.12.16
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:膳食纖維酒精不溶性固形物非水溶性固形物理化性質龍眼殼荔枝殼
外文關鍵詞:dietary fiberalcohol-insoluble solidwater-insoluble solidphysicochemical propertiesDimocarpus longan Lour. hullLitchi chinensis Sonn. hull
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1249
  • 評分評分:
  • 下載下載:327
  • 收藏至我的研究室書目清單書目收藏:2
本研究之目的在於分別以蒸餾水、酒精洗條法及酵素水解法自龍眼殼(Dimocarpus longan Lour. hull)及荔枝殼(Litchi chinensis Sonn. hull)中製備不同型態的纖維,並分別探討此兩種果殼來源纖維的單醣組成分及理化特性如總體密度、保水性、保油性、膨脹性。另外亦測定纖維對體外葡萄糖及膽酸的吸附能力、脂解酶活性及膽固醇微膠粒溶解度影響。實驗結果顯示龍眼殼及荔枝殼的纖維含有相當多的不溶性纖維,分別為71.286.1%及70.181.1%,二者的單醣大多以糖醛酸(uronic acid)及纖維素葡萄糖為主,顯示這些不溶性纖維含有許多果膠物質及纖維素。在理化性質測定上,龍眼殼及荔枝殼之非水溶性固形物的總體密度、保水力及保油性明顯(P < 0.05)較纖維素為高。另外,龍眼殼及荔枝殼之非水溶性固形物對葡萄糖的吸附較纖維素有延緩作用,龍眼殼及荔枝殼之非水溶性固形物對於膽酸吸附能力明顯(P < 0.05)較纖維素高,此外,非水溶性固形物有明顯(P < 0.05)抑制脂肪酶,減少釋出的游離脂肪酸。二種不同果殼來源纖維對膽固醇微膠粒的溶解影響,在龍眼殼之酒精不溶性固形物與非水溶性固形物及荔枝殼之非水溶性膳食纖維與非水溶性固形物明顯(P < 0.05)使膽固醇微膠粒不易溶解。同時龍眼殼及荔枝殼不溶性纖維之抗氧化成分分析顯示,可萃取多酚及不可萃取多酚含量,分別為6.3712.6及3.6015.5 g/100 g,龍眼殼不溶性纖維的類黃酮含量分別為0.370.76及0.260.80 g/100 g。龍眼殼及荔枝殼不溶性纖維之抗氧化力、清除DPPH自由基能力及還原力則以酒精不溶性固形物最佳,其次為非水溶性膳食纖維與非水溶性固形物。綜合以上分析結果及成本考量,龍眼殼及荔枝殼之非水溶性固形物具有良好的理化特性,未來可應用於高纖低熱量食品上。
The aim of the present research was to study the composition and physicochemical properties of various fiber-rich fraction prepared from the Dimocarpus longan Lour. hull (DLL hull) and Litchi chinensis Sonn. hull (LCS hull) via different preparation methods by using distilled water, alcohol, and enzymatic hydrolysis. The physicochemical properties of fiber types including water holding capacity, oil-holding capacity, swelling property, glucose adsorption capacity, glucose adsorption capacity. Furthermore, the effects of these insoluble fibers on bile acid binding capacity, lipase activity, and cholesterol-micelle disintegration were investigated. These results demonstrated that DLL hull and LCS hull were rich in insoluble fiber (71.286.1 and 70.181.1 g/100 g, respectively). DLL hull and LCS hull fibers were predominantly composed of uronic acid and cellulosic glucose, suggesting the presence of high amount pectin substances and cellulose. In view of the physicochemical properties, water insoluble solid (WIS) prepared from DLL hull and LCS hull showed significantly (P < 0.05) higher bulk density, water-holding and oil-holding capacity than those of cellulose. The WIS derived from both hulls markedly postponed the adsorption of glucose as compared with that of cellulose. Compared to cellulose, the WIS of DLL hull and LCS hull significantly (P < 0.05) increased bile acid binding capacity and decrease lipase activity. Alcohol insoluble solids (AIS) and WIS of DLL hull siginificantly (P < 0.05) decrease the solubility of cholesterol micelles. Insolule dietary fiber (IDF) and WIS of DLL hull siginificantly (P < 0.05) decrease the solubility of cholesterol micelles. The extractable polyphenols and nonextractable polyphenols content of insoluble fibers from DLL hull and LCS hull reached 6.3712.56 and 3.6615.5 g/100 g, respectively. Flavonoids contents in insoluble fibers from DLL hull and LCS hull reached 0.370.76 and 0.260.80 g/100 g, respectively. In the determination of antioxidant model systems including trolox equivalenr antioxidant capacity, DPPH (2,2’-diphenyl-1-picrylhydrazyl) scavenging activities, and reducing powers, AIS among these insoluble fibers was the best , followed by IDF and WIS. In conclusion, WIS parepared from both hull possessed desired physicochemical properties, they can be applied as low-calorie bulk ingredients requiring oil and water retention.
中文摘要…………………………………………………………………………………………………………………………………………………………………… I
英文摘要…………………………………………………………………………………………………………………………………………………………………… III
誌謝………………………………………………………………………………………………………………………………………………………………… V
目錄………………………………………………………………………………………………………………………………………………………………… VI
表目錄……………………………………………………………………………………………………………………………………………………………… XI
圖目錄……………………………………………………………………………………………………………………………………………………………… XIII
第壹章 前言………………………………………………………………………………………………………………………………………………………… 1
第貳章 文獻整理…………………………………………………………………………………………………………………………………………………………………… 2
一、龍眼簡介…………………………………………………………………………………………………………………………………………………………………… 2
二、荔枝簡介……………………………………………………………………………………………………………………………………………………………………… 2
三、果殼之生物性功能………………………………………………………………………………………………………………………………………………………………… 3
四、膳食纖維簡介………………………………………………………………………………………………………………………………………………………………… 4
(一)膳食纖維的定義………………………………………………………………………………………………………………………………………………………………… 4
(二)膳食纖維依水的溶解性………………………………………………………………………………………………………………………………………………………………… 6
1. 水溶性膳食纖維………………………………………………………………………………………………………………………………………………………………… 6
2. 非水溶性膳食纖維………………………………………………………………………………………………………………………………………………………………… 6
(三)依植物細胞內的功能性分類………………………………………………………………………………………………………………………………………………………………… 8
1. 構造性多醣類………………………………………………………………………………………………………………………………………………………………… 8
2. 構造性非多醣類………………………………………………………………………………………………………………………………………………………………… 8
3. 非構造性多醣類………………………………………………………………………………………………………………………………………………………………… 8
(四)膳食纖維的理化性質………………………………………………………………………………………………………………………………………………………………… 8
1. 粒子大小、表面積及體積………………………………………………………………………………………………………………………………………………………………… 8
2. 保水性……………………………………………………………………………………………………………………………………………………… 9
3. 保油性……………………………………………………………………………………………………………………………………………………… 9
4. 溶解度及黏性………………………………………………………………………………………………………………………………………………………………… 9
5. 結合力及吸附力………………………………………………………………………………………………………………………………………………………………… 10
6. 醱酵能力………………………………………………………………………………………………………………………………………………………………… 10
(五)膳食纖維對脂質及膽固醇代謝的作用機制………………………………………………………………………………………………………………………………………………………………… 10
1. 離子交換能力………………………………………………………………………………………………………………………………………………………………… 10
2. 小腸食糜擴散性質………………………………………………………………………………………………………………………………………………………………… 10
3. 膳食纖維與膽酸的關係………………………………………………………………………………………………………………………………………………………………… 11
4. 短鏈脂肪酸的調節………………………………………………………………………………………………………………………………………………………………… 12
(六)膳食纖維對葡萄糖的吸附影響………………………………………………………………………………………………………………………………………………………………… 12
五、自由基與抗氧化………………………………………………………………………………………………………………………………………………………………… 12
(一)自由基種類………………………………………………………………………………………………………………………………………………………………… 12
1. 超氧陰離子………………………………………………………………………………………………………………………………………………………………… 13
2. 過氧化氫………………………………………………………………………………………………………………………………………………………………… 13
3. 羥基自由基………………………………………………………………………………………………………………………………………………………………… 13
4. 單重態氧………………………………………………………………………………………………………………………………………………………………… 14
5. 過氧化脂質………………………………………………………………………………………………………………………………………………………………… 14
(二)自由基的來源………………………………………………………………………………………………………………………………………………………………… 14
1. 內生源………………………………………………………………………………………………………………………………………………………… 14
2. 外生源………………………………………………………………………………………………………………………………………………………… 15
(三)抗氧化劑種類………………………………………………………………………………………………………………………………………………………………… 15
1. 自由基終止劑………………………………………………………………………………………………………………………………………………………………… 15
2. 還原劑或氧清除劑………………………………………………………………………………………………………………………………………………………………… 15
3. 單重態氧抑制劑………………………………………………………………………………………………………………………………………………………………… 16
4. 金屬螯合劑………………………………………………………………………………………………………………………………………………………………… 16
(四)天然抗氧化劑………………………………………………………………………………………………………………………………………………………………… 16
(五)酚類化合物………………………………………………………………………………………………………………………………………………………………… 17
(六)類黃酮化合物………………………………………………………………………………………………………………………………………………………………… 17
第參章 材料與方法………………………………………………………………………………………………………………………………………………………………… 18
一、果殼纖維的組成分、理化性質及體外葡萄糖擴散及吸附………………………………………………………………………………………………………………………………………………………………… 18
(一)實驗材料………………………………………………………………………………………………………………………………………………………………… 18
1. 纖維原料………………………………………………………………………………………………………………………………………………………………… 18
2. 藥品…………………………………………………………………………………………………………………………………………………………… 18
3. 儀器…………………………………………………………………………………………………………………………………………………………… 20
(二)實驗方法………………………………………………………………………………………………………………………………………………………………… 20
1. 果殼前處理………………………………………………………………………………………………………………………………………………………………… 20
2. 一般組成分分析………………………………………………………………………………………………………………………………………………………………… 20
(1)水分………………………………………………………………………………………………………………………………………………………… 20
(2)灰分………………………………………………………………………………………………………………………………………………………… 21
(3)蛋白質………………………………………………………………………………………………………………………………………………………………… 21
(4)粗脂肪………………………………………………………………………………………………………………………………………………………………… 22
(5)碳水化合物………………………………………………………………………………………………………………………………………………………………… 22
(6)游離葡萄糖………………………………………………………………………………………………………………………………………………………………… 22
(7)澱粉………………………………………………………………………………………………………………………………………………………… 22
(8)抗解澱粉………………………………………………………………………………………………………………………………………………………………… 23
3. 纖維製備…………………………………………………………………………………………………………………………………………………………………… 24
(1)膳食纖維………………………………………………………………………………………………………………………………………………………………… 24
(2)酒精不溶性固形物………………………………………………………………………………………………………………………………………………………………… 25
(3)非水溶性固形物………………………………………………………………………………………………………………………………………………………………… 25
4. 理化性質測定………………………………………………………………………………………………………………………………………………………………… 26
(1)體積密度………………………………………………………………………………………………………………………………………………………………… 26
(2)溶解度………………………………………………………………………………………………………………………………………………………………… 26
(3)保水性………………………………………………………………………………………………………………………………………………………………… 27
(4)保油性………………………………………………………………………………………………………………………………………………………………… 27
(5)膨脹性………………………………………………………………………………………………………………………………………………………………… 27
5. 纖維中的單醣組成分………………………………………………………………………………………………………………………………………………………………… 28
(1)酸水解………………………………………………………………………………………………………………………………………………………………… 28
i. 總單醣類………………………………………………………………………………………………………………………………………………………………… 28
ii. 非纖維素單醣類………………………………………………………………………………………………………………………………………………………………… 28
(2)標準溶液的配製………………………………………………………………………………………………………………………………………………………………… 28
(3)衍生化………………………………………………………………………………………………………………………………………………………………… 29
(4)氣相層析儀分析………………………………………………………………………………………………………………………………………………………………… 30
(5)中性糖類含量計算………………………………………………………………………………………………………………………………………………………………… 30
(6)纖維素含量測定………………………………………………………………………………………………………………………………………………………………… 31
(7)糖醛酸含量測定………………………………………………………………………………………………………………………………………………………………… 31
6. 以體外實驗探討纖維對葡萄糖擴散速率及吸附的影響………………………………………………………………………………………………………………………………………………………………… 32
(1)纖維於葡萄糖–纖維系統中對葡萄糖擴散速率的影響………………………………………………………………………………………………………………………………………………………………… 32
(2)纖維於澱粉–α-amylase–纖維系統中對葡萄糖擴散速率的影響………………………………………………………………………………………………………………………………………………………………… 32
(3)纖維對葡萄糖吸附的影響………………………………………………………………………………………………………………………………………………………………… 33
(4)纖維對α-amylase活性的影響………………………………………………………………………………………………………………………………………………………………… 33
7. 膽酸吸附能力………………………………………………………………………………………………………………………………………………………………… 33
8. 抗氧化能力………………………………………………………………………………………………………………………………………………………………… 34
(1)可萃取多酚之萃取………………………………………………………………………………………………………………………………………………………………… 34
(2)不可萃取多酚之萃取………………………………………………………………………………………………………………………………………………………………… 34
(3)類黃酮含量………………………………………………………………………………………………………………………………………………………………… 35
(4)抗氧化能力測定………………………………………………………………………………………………………………………………………………………………… 35
(5)清除DPPH自由基能力之測定………………………………………………………………………………………………………………………………………………………………… 35
(6)還原力測定………………………………………………………………………………………………………………………………………………………………… 35
(7)清除超氧陰離子能力測定………………………………………………………………………………………………………………………………………………………………… 36
9. 脂肪吸附試驗………………………………………………………………………………………………………………………………………………………………… 36
(1)纖維對脂解酶活性之影響………………………………………………………………………………………………………………………………………………………………… 36
(2)纖維對膽固醇微膠粒溶解度之影響………………………………………………………………………………………………………………………………………………………………… 36
10. 統計分析………………………………………………………………………………………………………………………………………………………………… 37
第肆章 結果與討論………………………………………………………………………………………………………………………………………………………………… 38
一、果殼纖維的組成分………………………………………………………………………………………………………………………………………………………………… 38
(一)龍眼殼及荔枝殼的一般組成分………………………………………………………………………………………………………………………………………………………………… 38
(二)龍眼殼及荔枝殼中經由不同方法製備而成之纖維含量分佈………………………………………………………………………………………………………………………………………………………………… 38
(三)龍眼殼及荔枝殼各種不溶性纖維中的單醣組成分………………………………………………………………………………………………………………………………………………………………… 42
二、龍眼殼及荔枝殼中各種不溶性纖維的理化性質………………………………………………………………………………………………………………………………………………………………… 46
三、以體外實驗探討各種不溶性纖維對葡萄糖擴散速率及吸附的影響………………………………………………………………………………………………………………………………………………………………… 49
(一)龍眼殼及荔枝殼各種不溶性纖維對葡萄糖透析的影響………………………………………………………………………………………………………………………………………………………………… 49
(二)龍眼殼及荔枝殼各種不溶性纖維對葡萄糖吸附的影響………………………………………………………………………………………………………………………………………………………………… 54
(三)龍眼殼及荔枝殼各種不溶性纖維對α-amylase的影響………………………………………………………………………………………………………………………………………………………………… 58
四、龍眼殼及荔枝殼各種不溶性纖維對膽酸吸附能力………………………………………………………………………………………………………………………………………………………………… 58
五、龍眼殼及荔枝殼各種不溶性纖維抗氧化能力分析………………………………………………………………………………………………………………………………………………………………… 63
(一)龍眼殼及荔枝殼各種不溶性纖維的可萃取多酚含量………………………………………………………………………………………………………………………………………………………………… 63
(二)龍眼殼及荔枝殼各種不溶性纖維的不可萃取多酚含量………………………………………………………………………………………………………………………………………………………………… 63
(三)龍眼殼及荔枝殼各種不溶性纖維的類黃酮含量………………………………………………………………………………………………………………………………………………………………… 66
(四)龍眼殼及荔枝殼各種不溶性纖維的抗氧化能力………………………………………………………………………………………………………………………………………………………………… 68
(五)龍眼殼及荔枝殼各種不溶性纖維的清除DPPH自由基能力………………………………………………………………………………………………………………………………………………………………… 68
(六)龍眼殼及荔枝殼各種不溶性纖維的還原力測定………………………………………………………………………………………………………………………………………………………………… 70
(七)龍眼殼及荔枝殼各種不溶性纖維的清除超氧陰離子能力………………………………………………………………………………………………………………………………………………………………… 73
六、龍眼殼及荔枝殼各種不溶性纖維之脂肪吸附能力………………………………………………………………………………………………………………………………………………………………… 75
(一)龍眼殼及荔枝殼各種不溶性纖維對油脂被脂解酶分解之影響………………………………………………………………………………………………………………………………………………………………… 75
(二)龍眼殼及荔枝殼各種不溶性纖維對膽固醇微膠粒溶解度之影響………………………………………………………………………………………………………………………………………………………………… 75
第伍章 結論………………………………………………………………………………………………………………………………………………………………… 79
第陸章 參考文獻………………………………………………………………………………………………………………………………………………………………… 80

表 目 錄

表1-1、膳食纖維化學組成分的分類………………………………………………………………………………………………………………………………………………………………… 5
表1-2、抗性澱粉的分類、食物來源及在腸道中抵抗消化的影響因子………………………………………………………………………………………………………………………………………………………………… 7
表2-1、龍眼殼及荔枝殼的一般組成分………………………………………………………………………………………………………………………………………………………………… 39
表2-2、龍眼殼及荔枝殼的澱粉含量………………………………………………………………………………………………………………………………………………………………… 40
表2-3、龍眼殼及荔枝殼中不同形態纖維之含量………………………………………………………………………………………………………………………………………………………………… 41
表2-4、龍眼殼各種不溶性纖維的單醣之組成分………………………………………………………………………………………………………………………………………………………………… 43
表2-5、荔枝殼各種不溶性纖維的單醣之組成分………………………………………………………………………………………………………………………………………………………………… 45
表2-6、龍眼殼各種不溶性纖維的理化性質………………………………………………………………………………………………………………………………………………………………… 47
表2-7、荔枝殼各種不溶性纖維的理化性質………………………………………………………………………………………………………………………………………………………………… 48
表2-8、龍眼殼各種不溶性纖維之溶解度………………………………………………………………………………………………………………………………………………………………… 50
表2-9、荔枝殼各種不溶性纖維之溶解度………………………………………………………………………………………………………………………………………………………………… 51
表2-10、龍眼殼各種不溶性纖維對葡萄糖透析的影響………………………………………………………………………………………………………………………………………………………………… 52
表2-11、荔枝殼各種不溶性纖維對葡萄糖透析的影響………………………………………………………………………………………………………………………………………………………………… 53
表2-12、龍眼殼各種不溶性纖維於含α-amylase的馬鈴薯澱粉溶液中對葡萄糖透析的影響………………………………………………………………………………………………………………………………………………………………… 55
表2-13、荔枝殼各種不溶性纖維於含α-amylase的馬鈴薯澱粉溶液中對葡萄糖透析的影響………………………………………………………………………………………………………………………………………………………………… 56
表2-14、龍眼殼各種不溶性纖維於不同濃度的葡萄糖溶液中對葡萄糖結合程度的影響………………………………………………………………………………………………………………………………………………………………… 57
表2-15、荔枝殼各種不溶性纖維於不同濃度的葡萄糖溶液中對葡萄糖結合程度的影響………………………………………………………………………………………………………………………………………………………………… 59
表2-16、龍眼殼及荔枝殼纖維對α-amylase活性的影響………………………………………………………………………………………………………………………………………………………………… 60
表2-17、龍眼殼及荔枝殼各種不溶性纖維對膽酸結合程度的影響………………………………………………………………………………………………………………………………………………………………… 61
表2-18、龍眼殼及荔枝殼各種不溶性纖維對脂解酶活性之影響………………………………………………………………………………………………………………………………………………………………… 76

表2-19、龍眼殼及荔枝殼各種不溶性纖維對膽固醇微膠粒溶解度之影響………………………………………………………………………………………………………………………………………………………………… 77

圖 目 錄

圖1、(A)龍眼殼及(B)荔枝殼各種不溶性纖維的可萃取多酚含量………………………………………………………………………………………………………………………………………………………………… 64
圖2、(A)龍眼殼及(B)荔枝殼各種不溶性纖維的不可萃取多酚含量………………………………………………………………………………………………………………………………………………………………… 65
圖3、(A)龍眼殼及(B)荔枝殼各種不溶性纖維的類黃酮含量………………………………………………………………………………………………………………………………………………………………… 67
圖4、(A)龍眼殼及(B)荔枝殼各種不溶性纖維的抗氧化力………………………………………………………………………………………………………………………………………………………………… 69
圖5、(A)龍眼殼及(B)荔枝殼各種不溶性纖維的DPPH自由基清除能力………………………………………………………………………………………………………………………………………………………………… 71
圖6、(A)龍眼殼及(B)荔枝殼各種不溶性纖維的還原力測定………………………………………………………………………………………………………………………………………………………………… 72
圖7、(A)龍眼殼及(B)荔枝殼各種不溶性纖維的清除超氧陰離子能力測定………………………………………………………………………………………………………………………………………………………………… 74


第陸章 參考文獻

行政院農業委員會。2004-2009。農業統計月報。
行政院農業委員會。2009。農業統計年報。
行政院農業委員會。2004-2009。農業統計要覽。
行政院農業委員會農糧署。2009。國產優良品牌蔬果生產管理技術作業標準。
吳明穎。2009。金桔、檸檬與葡萄果渣纖維的理化特性及其應用之研究。大仁科技大學食品科技系研究所碩士論文。
胡淼琳。2003。氧自由基與臨床。合計圖書出版社:3-62。
徐榜奎。2007。微化處理提升膳食纖維功能性之研究。中興大學食品暨應用生物科技學系博士論文。
陳溪潭。2001。黑葉荔枝之栽培管理。台南區農業專訊。36:5-10。
黃雅玲。2003。柳橙皮與百香果籽果渣纖維理化性質及生理活性之研究。國立中興大學食品科學系研究所碩士論文。
楊淑怡。2010。豆渣高纖麵包製備及品質之探討。國立臺灣海洋大學食品科學系碩士論文。
賴愛姬。2002。老年期營養與疾病。富林出版社:27-40。
鍾知達。2009。玉荷苞及黑葉荔枝果實採前微裂觀察及採後保鮮技術之研究。屏東科技大學農園生產系所碩士論文。
顏昌瑞。1995。龍眼。台灣農家要覽農作篇(二)。豐年社出版:43-50。
Ajila C.M.; Aalami M.; Leelavathi K.; Prasada-Rao U.J.S. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. 2010, 11: 219-224.
Alasalvar C.; Grigor J.M.; Zhang D.; Quantick P.C.; Shahidi F. Comparison ofvolatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food Chem. 2001, 49: 1410-1416.
American Association of Cereal Cemists report. The definition of dietary fiber. 2001, CFW. 46: 112.
Ames B. Micronutrients prevent cancer and delay aging. Toxicol. Lett. 1998, 102: 5-18.
Anderson J.W. Dietary fiber, lipids and atherosclerosis. Am. J. Card. 1987, 60: 17-22.
Anderson J.W. Short chain fatty acids and lipid metabolism: human studies. Physiological and clinical aspects of short chain fatty acids (Cummings JH, Rombeau JL, Sakata T, eds.). Cambridge University Press, New York. 1995, 509-523.
Andoh A.; Bamba T. Sasaki M. Physiological and antiinflammatory roles of dietary fiber and butyrate in intestinal functions. J. Parent. En. 1999, 23: 70-73.
AOAC. Official Methtods of Analysis, 16th ed. Association of Official analytical Chemists: Washington, DC. 1995.
AOAC. Official Methtods of Analysis, 17th ed. Association of Official analytical Chemists: Washington, DC. 2000.
Arnao M.B.; Cano A.; Hernandez-Ruiz J.; Garcia-Canovas F.; Acosta M. Inhibition by L-ascorbic acid and other antioxidants of the 2.2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase: a new approach for determining total antioxidant status of foods. Anal. Biochem. 1996, 236: 255-261.
Bittner A.S; Burritt E.A.; Moser J.; Street J.C. Composition of dietary fiber: Nutral and acidic sugar composition of the alcohol insoluble residue from human foods. J. Food Sci. 1982, 47: 1469-477.
Bloknina O.; Virolainen E.; Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 2003, 91: 179-194.
Bravo L. Polyphenols: chemistry, dietary sources, metabolism,and nutritional significance. Nutr. Res. 1998, 56: 317-333.
Carter J.W.; Hardman W.E.; Heitman D.W.; Cameron I.L. Type and amount of individual dietary fibers on: serum lipid profiles, serum glucose concentration and energy intake in rats. Nutr. Res. 1998, 10: 1743-1756.
Chau C.F.; Chen C.H.; Lee M.H. Comparison of the characteristics, functional properties, and in vitro hypoglycemic effects of various carrot insoluble fiber-rich fractions. Food Sci. Technol. 2004, 37: 155-160.
Chau C.F.; Cheung P.C.K.; Wong Y.S. Functional properties of protein concentrates from three Chinese indigenous legume seeds. J. Agric. Food Chem. 1997, 45: 2500-2503.
Chau C.F.; Huang Y.L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 2003, 51: 2615-2618.
Chau C.F. Nutritonal values of three leguminous seeds and functional properties of their protein and fiber fractions. Ph. D. Dissertation, The Chinese University of Hong Kong. 1998,5: 1046-1052.
Church D.F.; Pryor WA. Free radical chemistry of cigarette smoke and its toxicological implications. Environ. Health Perst. 1985, 64: 111-126.
Demigne C.; Levrat M.A.; Behr S.R.; Moundras C.; Remesy C. Cholesterol-lowering action of guar gum in the rat: changes in bile acids and sterols excretion and in enterohepatic cycling of bile acids. Nutr. Res. 1998, 18: 1215-225.
Diplock A.T.; Charleux J.L.; Crozier-Willi G.; Jok F.J.; Rice-Evans C.; Roberfroid M.; Stahl W.; Vina-Ribes J. Funtional food science and defese against reactive oxidative species. Brit. J. Nutr. 1998, 80: 77-12.
Duan X.; Jiang Y.; Su X.; Zhang Z.; Shi J. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem. 2007, 101: 1365-371.
Duan X.; Wu G.; Jiang Y. Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Molecules 2007, 12: 759-71.
Dubois M.; Gilles K.A.; Hamilton J.K.; Revers P.A.; Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28: 350-56.
Eliasson A. Starch in food structure, function and application. Woodhead publishing limited. 2004.
Englyst H.N.; Quigley M.E.; Hudson G.J. Determination of dietary fiber as non-starch polysaccharide with gas-liquid chromatographic, high-performance liquid chromatographyic or spectrophotometric measurement of constituent sugars. Analyst. 1994, 119: 1497-509.
Euresta. European Flair-concerted Action on Resistant Starch. Newsletter, September. Human Nutrition Department, Wageningen Agriculture University, Wageningen, The Netherlands. 1994.
Festa F.; Aglitti T.; Duranti G.; Ricordy R.; Perticone P.; Cozzi R. Strong antioxidant activity of ellagic acid in mammalian cells in vitro revealed by the comet assay. Anticancer Res. 2001, 21: 3903-908.
Fugel R.; Carle R.; Schieber A. A novel approach to quality and authenticity control of fruit products using fractionation and characterization of cell wall polysaccharides. Food Chem. 2004, 87: 141-50.
Gallaher C.M.; Munion J.; Hesslink R.; Wise J.; Gallaher D.D. Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J. Nutr. 2000, 130: 2753-759.
Gallaher D.D.; Hassel C.A.; Lee K.; Gallaher C.M. Viscosity and fermentability as attributes of dietary fiber responsible for the hypocholesterolemic effect in hamsters. J. Nutr. 1993, 123: 244-52.
Golubev V.N.; Kolechik A.A.; Rigavs U. A. Carbohydrate complex of the fruit of Chaenomeles maulei. Khim. Prir. Soedin. 1990, 4: 460-63.
Goni I.; Garcia-Diz L.; Manas E.; Saura-Calixto F. Analysis of resistant starch: a method for foods and food products. Food Chem. 1996, 564: 445-49.
Gorecka D.; Lampart-Szczapa E.; Janitz W.; Sokolowska B. Composition of fractional and functional properties of dietary fiber of lupines (L. luteus and L. albus). Nahrung 2000, 44: 229-32.
Gourgue C.M.P.; Champ M.M.J.; Lozano Y.; Delort-Laval J. Dietary fiber from mango byproducts: characterization and hypoglycemic effects determined by in vitro methods. J. Agric. Food Chem. 1992, 40: 1864-888.
Grigelmo-Miguel N.; Martian-Belloso O. A dietary fiber supplement from fruit and vegetable processing waste. Conference of Food Engineering. American Institute of Chemical Engineers. Los Angeles, CA. 1997.
Grigelmo-Miguel N.; Martin-Belloso O. Comparison of dietary fiber from by-products of processing fruits and greens and from cereals. Food Sci. Technol. 1999, 8: 503-508.
Groen A.K. The emerging role of bile acids as integrators of intermediary metabolism. J. hepatol. 2006, 45: 337-338.
Guillon F.; Amado R.; Amaral-Collaco M.T.; Andersson, H.; Bach-Knudsen K.E.; Champ M.; Mathers J.; Robertson J.A.; Rowland I.; Van Loo J. Functional properties of nondigestible carbohydrates. Nantes, France: European commission-DG XII: Science, research and development, Imprimerie Parenthe. ses. 1998.
Guillon F.; Champ, M. Structural and physical properties of dietary fibers, and consequences of processing on human physiology. Food Res. Int. 2000, 33: 233-245.
Halliwell B. Vitmin C: the key to health or a slow-acting carcinogen. Redox Rep. 1994, 1: 5-9.
He N.; Wang Z.; Yang C.; Lua Y.; Sun D.; Wang Y.; Shao W.; Li Q. Isolation and identification of polyphenolic compounds in longan pericarp. Sep. Purif. Technol. 2009, 70: 219-224.
Huma Z.E.; Abert-Vian M.; Elmaataoui M.; Chemat F. A novel idea in food extraction field: Study of vacuum microwave hydrodiffusion technique for by-products extraction. J. Food Eng. 2011, 105: 351-360.
Isaksson G.; Lundquist I.; Ihse I. Effect of dietary fiber on pancreatic enzyme activity in vitro. The importance of viscosity, pH, ionic strength, adsorption and time of incubation. Gastroenterology 1982, 82: 918-924.
James L.G.; Sareen S.G. Advanced nutrition and human metabolism. Third Edition. 1999. 110-111.
Jiang G.; Prasad K.N.; Jiang Y.; Yang B.; Jia Y.; Sun J. Extraction and structural identification of alkali-soluble polysaccharides of longan(Dimocarpus longan Lour.)fruit pericarp. Innov. Food Sci. Emerg. 2009, 10: 638-642.
Jia Z.; Tang M.; Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64: 555-559.
Jimenez-Escrig A.; Jimenez-Jimenez I.; Pulido R.; Saura-Calixto F. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 2001, 81: 530-534.
Jimenez-Escrig A.; Rincon M.; Pulido R.; Saura-Calixto F. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J. Agric. Food Chem. 2001, 49: 5489-5493.
Jun W.J.; Han B.K.; Yu K.W.; Kim M.S.; Chang I.S.; Kim, H. Y. Antioxidant effects of Origanum majorana L. on superoxide anion radicals. Food Chem. 2001, 75: 439-444.
Kahlon T.S.; Shao Q. In vitro binding of bile acids by soy bean (Glycine max.), black eye bean (Vigna unguiculata), garbanzo (Cicer arietinum) and lima bean (Phaseolus lunatus). Food Chem. 2004, 86: 435-440.
Kahlon T.S.; Smith G.E. In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.), strawberries (Fragaria X ananassa), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris). Food Chem. 2007, 100: 1182-1187.
Kahkonen M.P.; Copia A.I.; Heinonen M. Berry phenolics and their antioxidant activity. J. Sci. Food Agr. 2001, 49: 4076-4082.
Kahlon T.S.; Woodruff C.L. In vitro binding of bile acids by soy protein, pinto beans black beans and wheat gluten. Food Chem. 2002, 79: 425-429.
Kardo-ov A.; Machova E. Antioxidant activity of medicinal plant polysaccharides. Fitoterapia 2006, 77: 367-373.
Kirat D.; Kondo K.; Shimada R.; Kato S. Dietary pectin up-regulates monocaboxylate transporter1 in the rat gastrointestinal tract. Exp. Physiol. 2011, 94: 422-433.
Larrauri J.A.; Rodriguez J.L.; Fernandez M.; Borroto B. Dietary fiber obtained from citrus husk and pineapple peel. Rev. Esp. Ciencia Tecnol. Aliment. 1994, 1: 102-107.
Leclere C.J.; Champ M.; Boillot J.; Galmiche J. P. Role of viscous guar gums in lowering the glycemic response after a solid mean. Am. J. Clin. Nr. 1994, 59: 914-921.
Leong L.P.; Shui G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76: 69-75.
Leontowicz M.; Gorinstein S.; Leontowicz H.; Krzeminski R.; Lojek A.; Katrich E. Apple and pear peel and pulp and their influence on plasma lipids and antioxidant potentials in rats fed cholesterol containing diets. J. Agr. Food Chem. 2003, 51: 5780-5785.
Liener I.E.; Kakade M.L. Protease inhibitors. Toxic constituents of plant foodstuff, 2 nd ed.; Liener, I. E., Ed.; Academic Press: New York. 1980.
Liu L.; Xie B.; Cao S.; Yang E.; Xu X.; Guo S. A-type procyanidins from Litchi chinensis pericarp with antioxidant activity. Food Chem. 2007, 105: 1446-1451.
Liu Y.; Ahmad H.; Luo Y.; Gardiner D.T.; Gunasekera R.S.; Mckeehan W.L.; Patil B.S. Citrus pectin: characterization and inhibitory effect on fibroblast growth factor-receptor interaction. J. Agr. Food Chem. 2001, 49: 3051-3057.
Luk J.M.; Lai W.; Tam P.; Koo M.W. Suppression of cytokine production and cell adhesion molecule expression in human monocytic cell line THP-1 by Tripterygium wilfordii polysaccharide moiety. Life Sci. 2000, 67: 155-163.
Massiot P.; Renard C.M.G.C. Composition, physico-chemical properties and enzymatic degradation of fibers prepared from different tissues of apple. Food Sci. Technol. 1997, 30: 800-806.
Mc-Caughan J.J.S. Photodynamic therapy-a review. Drug. Aging. 1999, 15: 49-68.
Miller N.J.; Evans C.R.; Davies M.J.; Gopinathan V.; Milner A. A novel method for measuring antioxidant status in premature neonates. Clinical Sci. 1993, 84: 407-412.
Montreau F.R. The content of total phenolic compounds in wines by the Folin-Ciocalteau method. Connaiss. Vigne Vin 1972, 24: 397-404.
Nugent A.P. Health properties of resistant starch. Nutr. Bull. 2005, 37: 27-54.
Ou S.; Kwok K.; Li Y.; Fu L. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agr. Food Chem. 2001, 49: 1026-1029.
Pan Y.; Wang K.; Huang S.; Wang H.; Mu X.; He C.; Ji X.; Zhang J.; Huang F. Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chem. 2008, 106: 1264-1270.
Park H.S.; Choi J.S.; Kim K.H. Docosahexaenoic acid-rich fish oil and pectin have a hypolipidemic effect, but pectin increases risk factor for colon cancer in rats. Nutr. Res. 2000, 20: 1783-1794.
Pelucchi C.; La V.C.; Chatenoud L.; Negri E.; Conti E.; Montella M.; Calza S.; Dal M.L.; Franceschi S. Dietary fibers and ovarian cancer risk. Eur. J. Cancer 2001, 37: 2235-2239.
Peters J. H.; Simasko S.M.; Ritter R.C. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Physiol. Behav. Article in press. 2006.
Prasad N.K.; Divakar S.; Shivamurthy G.R.; Aradhya S.M. Isolation of a free radical scavenging antioxidant from water spinach (Ipomoea aquatica Forsk). J. Sci. Food Agr. 2005, 85: 1461-1468.
Prasad N.K.; Yang B.; Ruenroengklin N.; Zhao M.; Jiang Y. Application of ultrasonication or high pressure to assist extraction of flavonoids from litchi fruit pericarp. J. Food Process. Eng. 2009, 32: 828-843.
Raederstorff D.G.; Schlachter M. F.; Elste V.; Weber P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J. Nutr. Biochem. 2003, 14: 326-332.
Ralet M.C.; Della-Valle G.; Thibault J.F. Raw and extruded fiber from pea hulls. Part I: composition and physicochemical properties. Carbohydr. Polym. 1993, 20: 17-23.
Rangkadilok N.; Worasuttayangkurn L.; Bennett R.N.; Satayavivad J. Identification and quantification of polyphenolic compounds in longan (Euphoria longana Lam.) fruit. J. Agr. Food Chem. 2005, 53: 1387-1392.
Rich-Evans C.A.; Miller N.J.; Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2: 152-159.
Rich-Evans C.A.; Miller N.J.; Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 1996, 20: 933-956.
Robak J.; Gryglewski I.R. Flavonoids are scavengers of superoxide anions. Biochem. Pharma. 1988, 37: 837841.
Robertson J.A.; Eastwood M.A. An examination of factors which may affect the water holding capacity of dietary fiber. Br. J. Nutr. 1981, 45: 83-88.
Rodriguez M.D.; Redondo A.; Villanueva M.J. Study of dietary fiber content in cucumber by gravimetric and spectrophotometric methods. Food Chem. 1992, 43:295-298.
Russell D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 2003, 72:137-174.
Sajilata M.G.; Singhal R.S.; Kulkarni P.R. Resistant starch-a review. Food Sci. F. 2006, 5: 1-17.
Sakata T. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br. J. Nutr. 1987, 58: 95-103.
Sandy M.S.; Moldeus P.; Ross D.; Smith M.T. Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Studies with a comptomised isolated hepatocyte model system. Bio Pharm. 1986, 35: 3095-3101.
Saura-Calixto F. Antioxidant dietary fiber product: a new concept and a potential food ingredient. J. Agr. Food Chem. 1998, 46: 4303-4306.
Saura-Calixto F.; Bravo L. Intestinal degradation of polyphenols. In dietary fiber and fermentation in the colon. Luxembourg 1996, 92: 174-180.
Saura-Calixto F.; Gona I.; Manas E.; Abia R. Klason lignin, condensed tannins and resistant protein as dietary fiber constituents: determination in grape pomace. Food Chem. 1991, 39: 299-309.
Schneeman B.O. Dietary fiber: physical and chemical properties, methods of analysis, and physiological effects. Food Technol. 1986, 40: 104-110.
Shimada K.; Fujikawa K.; Yahara K.; Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 1992, 40: 945-948.
Shimura S.; Tsuzuki W.; Kobayashi S.; Suzuki T. Inhibitory effect on lipase activity of extracts from Medicinal herbs. Biosci. Biotechnol. Biochem. 1992, 56: 1478-1479.
Sievert D.; Pomeranz Y. Enzyme-resistant starch I. Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal. Chem. 1989, 66: 342-347.
Simpson H.C.R.; Simpson R.W. Lousley S.; Carter R.D.; Geekie M.; Hockaday T.D.R.; Mann J.I. A high carbohydrate leguminous fibre diet improves all aspects of diabetic control. Lancet 1981, 1: 1-15.
Southgate D.A.T. The non-starch polysaccharide methods. Dietary fiber analysis. Southgate, D.A.T., Ed. Royal Society of Chemistry: Cambridge 1995. 87-118.
Thomas M.; Crepeau M.J.; Rumpunen K.; Thibault J.F. Dietary fiber and cell-wall polysaccharides in the fruits of Japanese quince (chaenomeles japonica). Food Sci. Technol. 2000, 33: 124-131.
Ting S.V. Alcohol-insoluble constituents ofjuice vesicles of citrus fruit. J.Food Sci. 1970, 35: 757-761.
Ting S.V.; Rouseff R.L. Dietary fiber from citrus wastes: characterization. Acs Sym. Ser. 1983, 15: 205-219.
Trowell H.C. Definition of dietary fiber and hypothesis that it is protective factor in certain diseases. Am. J. Clin. Nutr. 1976, 29: 417-427.
Turley S.D.; Dietschy J.M. Re-evaluation of the -hydroxysteroid dehydrogenase assay for total bile acids in bile. J. Lipid Res. 1978, 19: 924-928.
Valiente C.; Arrigoni E.; Esteban R.M.; Amado R. Grape pomace as a potential food fiber. J. Food Sci. 1995, 60: 818-820.
Wang H.C; Hu Z.Q.; Wang Y.; Chen H.B.; Huang X.M. Phenolic compounds and the antioxidant activities in litchi pericarp: Difference among cultivars. Sci. Hortic. 2011, 129: 784-789.
Williams C.S.; Mann M.; DuBois R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999, 18: 7908–7916.
Yang B.; Zhao M.; Jiang Y. Anti-glycated activity of polysaccharides of longan (Dimocarpus longan Lour.) fruit pericarp treated by ultrasonic wave. Food Chem. 2009, 114: 629-633.
Yang B.; Zhao M.M.; Shi J.; Cheng G.P.; Ruenroengklin N.; Jiang, Y.M. Variations in water-soluble saccharides and phenols in longan fruit pericarpafter drying. J. Food Process Eng. 2008, 31: 66-77.
Yang B.; Zhao M.; Prasad K.N.; Jiang G.; Jiang Y. Effect of methylation on the structure and radical scavenging activity of polysaccharides from longan (Dimocarpus longan Lour.) fruit pericarp. Food Chem. 2010, 118: 364-368.
Yen G.C.; Chen H.Y. Antioxidant activity of various tea extracts in relation to their antimut agenicity. J. Agr. Food Chem. 1995, 43: 27-32.
Yildirim A.; Mavi A.; Oktay M.; Kara A.A.; Algur F.; Bilaloglu V. Comparison of antioxidant and antimicrobial activities of tilia (Tilia Argentea Desf Ex DC), sage (Salvia triloba L.), and black tea (Camellia sinensis) extracts. J. Agr. Food Chem. 2000, 48: 5030-5034.
Yilmaz Y.; Toledo R.T. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agr. Food Chem. 2004, 52: 255-260.
Zhang D; Quantick P.C.; Grigor J.M. Changes in phenolic compounds in litchi (Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest Biol. Tec. 2000, 19: 165-72.
Zhao M.; Yang B.; Wang J.; Liu Y.; Yu L.; Jiang, Y. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp. Int. Immunopharmacol. 2007, 7: 162166.
Zhang N.; Huang C.; Ou S. In vitro binding capacities of three dietary fibers and their mixture for four toxic elements, cholesterol, and bile acid. J. Hazard. Mater. 2011, 186: 236-239.
Zhou H.C.; Lin Y.M.; Li Y.Y.; Li M.; Wei S.D.; Chai W.M.; Tam N. F.Y. Antioxidant properties of polymeric proanthocyanidins from fruit stones and pericarps of Litchi chinensis Sonn. Food Res. Int. 2011, 44: 613-620.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊