Aleström, P., Holter, J.L., Nourizadeh-Lillabadi, R., 2006. Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol. 24:15-21.
Babb, S.G., Marrs, J.A., 2004. E-cadherin regulates cell movements and
tissue formation in early zebrafish embryos. Dev. Dyn. 230:263-277.
Baughan, M.A., Valentine, W.N., Paglia, D.E., Ways, P.O., Simons, E.R., DeMarsh, Q.B., 1968. Hereditary hemolytic anemia associated with glucosephophate isomerase (GPI) deficiency a new enzyme defect of human erythrocytes. Blood 32:236-249.
Benlimame, N., Simard, D., Nabi, I.R., 1995. Autocrine motility factor
receptor is a marker for a distinct tubular membrane organelle. J. Cell Biol.
129:459-471.
Benlimame, N., Le, P.U., Nabi, I.R., 1998. Localization of autocrine
motility factor receptor to caveolae and clathrin-independent internalization
of its ligand to smooth endoplasmic reticulum. Mol. Biol. Cell 9:773-1786.
Betchaku, T., Trinkaus, J.P., 1978. Contact relations, surface activity, and cortical
microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of fundulus before and during epiboly. J. Exp. Zool. 206:381-426.
Biederer, T., Volkwein, C., Sommer, T., 1997. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806-1809.
Bonifacino, J.S., Weissman, A.M., 1998. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev. Cell Dev. Biol. 14:19-57.
Brandner, J.M., 2009. Tight junctions and tight junction proteins in mammalian epidermis. Eur. J. Pharm Biopharm 72:289-294.
Brodsky, J.L., McCracken, A.A., 1999. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10:507-513.
Betchaku, T., Trinkaus, J.P., 1978. Contact relations, surface activity and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of Fundulus before and during epiboly. J. Exp. Zool. 206:381-426.
Carvalho, L., Stuhmer, J., Bois, J.S., Kalaidzidis, Y., Lecaudey, V., Heisenberg, C. P., 2009. Control of convergent yolk syncytial layer nuclear movement in zebrafish. Development 136:1305-1315.
Chaput, M., Claes, V., Portetelle, D., Cludts, I., Cravador, A., Burny, A., Gras, H., Tartar, A., 1988. The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332:454-455.
Chui, C.G., St-Pierre, P., Nabi, I.R., Wiseman, S.M., 2008. Autocrine motility factor receptor: a clinical review. Expert Rev. Anticancer Ther. 8:207-217.
Chen, S., Kimelman, D., 2000. The role of the yolk syncytial layer in germ layer patterning in zebrafish. Development 127:4681-4689.
Chen, B., Mariano, J., Tsai, Y.C., Chan, A.H., Cohen, M., Weissman, A.M., 2006. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc. Natl. Acad. Sci. U.S.A. 103:341-346.
Cheng, J.C., Miller, A.L., Webb, S.E., 2004. Organization and function
of microfilaments during late epiboly in zebrafish embryos. Dev. Dyn. 231: 313-323.
D’Amico, L.A., Cooper, M.S., 2001. Morphogenetic domains in the yolk syncytial
layer of axiating zebrafish embryos. Dev. Dyn. 222:611-624.
Dickmeis, T., Mourrain, P., Saint-Etienne, L., Fischer, N., Aanstad, P., Clark,
M., Strahle, U., Rosa, F., 2001. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev. 15:1487-1492.
Dooley, K., Zon, L.I., 2000. Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 10:252-256.
Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S.J., Moynihan, J., Paw,
B.H., Drejer, A., Barut, B., Zapata, A., Law, T.C., Brugnara, C., Lux, S.E., Pinkus, G.S., Pinkus, J.L., Kingsley, P.D., Palis, J., Fleming, M.D., Andrews, N.C., Zon, L.I., 2000. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776-781.
Fang, S., Lorick, K.L., Jensen, J.P., Weissman, A.M., 2003. RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin. Cancer Biol. 13:5-14.
Faik, P., Walker, J.I., Redmill, A.A., Morgan, M.J., 1988. Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3' sequences. Nature 332:455-457.
Fairbank, M., St-Pierre, P., Nabi I.R., 2009. The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. Molecular BioSystems 5:793-801
Folkman, J., Watson, K., Ingber, D., Hanahan, D., 1989. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58-61.
Funasaka, T., Haga, A., Raz, A., Nagase, H., 2001. Tumor autocrine motility factor is an angiogenic factor hat stimulates endothelial cell motility. Biochem. Biophys. Res. Commun. 284:1116-1125.
Funasaka, T., Haga, A., Raz, A., Nagase, H., 2002. Autocrine motility factor secreted by tumor cells upregulates vascular endothelial growth factor receptor (Flt-1) expression in endothelial cells. Int. J. Cancer 101:217-223.
Gurney, M.E., Apatoff, B.R., Spear, G.T., Baumel, M.J., Antel, J.P., Bania, M.B., Reder, A.T., 1986a. Neuroleukin: a lymphokine product of lectin-stimulated T cells. Science 234:574-581.
Gurney, M.E., Heinrich, S.P., Lee, M.R., Yin, H.S., 1986b. Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science 234:566-574.
Goldsmith, P., 2004. Zebrafish as a pharmacological tool: the how, why, and when. Curr. Opin. Pharmacol. 4:1-9.
Goetz, J.G., Genty, H., St-Pierre, P., Dang, T., Joshi, B., Sauve, R., Vogl, W., Nabi, I.R., J. Cell Sci., 2007. Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. Journal of cell science 120:3553-3564.
Hall, A., 1990. The cellular functions of small GTP-binding proteins. Science 249:635-640.
Hall, A., 1998. Rho GTPases and the actin cytoskeleton. Science 279:509-514.
Haga, A., Tanaka, N., Funasaka, T., Hashimoto, K., Nakamura, K.T., Watanabe, H., Raz, A., Nagase, H., 2006. The autocrine motility factor (AMF) and AMF-receptor combination needs sugar chain recognition ability and interaction using the C-terminal region of AMF. J. Mol. Biol. 358:741-753.
Hershko, A., Ciechanover, A., 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425-479.
Hill, A.J., Teraoka, H., Heideman, W., Peterson, R.E., 2005. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci. 86:6-19.
Holloway, B.A., Sol Gomez de la Torre Canny., Ying, Y., Slusarski, D.C., Freisinger, C.M., Roland, D., Chou1M.M., Wagner D.S., , Mullins M.C., 2009. A novel role for MAPKAPK2 in morphogenesis during zebrafish development. PloS. Genet. 5:e1000413.
Hsu, H.J., Liang, M.R., Chen, C.T., Chung, B.C., 2006. Pregnenolone stabilizes microtubules and promotes zebrafish embryonic cell movement. Nature 439:480-483.
Isken, A., Holzschuh, J., Lampert, J.M., Fischer, L., Oberhauser, V., Palczewski, K., von Lintig, J., 2007. Sequestration of retinyl esters is essential for retinoid signaling in the zebrafish embryo. J. Biol. Chem. 282:1144-1151.
Kane, D.A., McFarland K.N., Warga R.M., 2005. Mutations in half baked
E-cadherin block cell behaviors that are necessary for teleost epiboly. Development 132:1105-1116.
Kawahara, A., Nishi, T., Hisano, Y., Fukui, H., Yamaguchi, A., Mochizuki, N., 2009. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524-527.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203:253-310.
Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B., Stainier, D.Y., 2001. Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 15:1493-1505.
Köppen, M., Ferna´ndez, B.G., Carvalho, L., Jacinto, A., Heisenberg, C.P., 2006. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development 133:2671-2681.
Lampert, J.M., Holzschuh, J., Hessel, S., Driever, W., Vogt, K., von Lintig, J., 2003. Provitamin A conversion to retinal via the beta-carotene-15,15'-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development 130:2173-2186.
Le, P.U., Benlimame, N., Lagana, A., Raz, A., Nabi, I.R., 2000. Clathrin-mediated
endocytosis and recycling of autocrine motility factor receptor to fibronectin fibrils is a limiting factor for NIH-3T3 cell motility. J. Cell Sci. 113: 3227-3240.
Lepage, S.E., Bruce, A.E.E., 2010. Zebrafish epiboly: mechanics and mechanisms. Int J. Dev. Biol. 54:1213-1228.
Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., Ferrara, N., 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306-1309.
Lee, J.N., Song, B., DeBose-Boyd, R.A., Ye, J., 2006. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem. 281:39308-39315.
Liotta, L.A., Kleinerman, J., Saidel, G.M., 1974. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34:997-1004.
Liotta, L.A., Mandler, R., Murano, G., Katz, D.A., Gordon, P.K., Chiang, Schiffmann, E., 1986. Tumor cell autocrine motility factor. Proc. Natl. Acad. Sci. U.S.A. 83:3302-3306.
Liu, L., We, G., 2007. Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary. Biol. Reprod. 76:294-301.
McFarland, K.N., Warga, R.M., Kane, D.A., 2005. Genetic locus half baked is
necessary for morphogenesis of the ectoderm. Dev. Dyn. 233:390-406 .
Meusser, B., Hirsch, C., Jarosch E., Sommer, T., 2005. ERAD: the long road to destruction. Nat. Cell Biol. 7:766-772.
Mizuno, T., Yamaha, E., Wakahara, M., Kuroiwa, A., Takeda, H., 1996. Mesoderm induction in zebrafish. Nature 383:131-132.
Montero, J.A., Carvalho, L., Wilsch-Brauninger, M., Kilian, B., Mustafa C., Heisen-Berg, C.P., 2005. Shield formation at the onset of zebrafish gastrulation. Development 132:1187-1198.
Nabi, I.R., Raz, A., 1987. Cell shape modulation alters glycosylation of a metastatic melanoma cell-surface antigen. International Journal of Cancer 40:396-402.
Nabi, I.R., Watanabe, H., Raz, A., 1990. Identification of B16-F1 melanoma
autocrine motility-like factor receptor. Cancer Res. 50:409-414.
Nair, S., Schilling, T.F., 2008. Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science 322:89-92.
Ng, T., Shima, D., Squire, A., Bastiaens, P.I., Gschmeissner, S., Humphries,
M.J., Parker, P.J., 1999. PKCa regulates β1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J. 18:3909-3923.
Niinaka, Y., Paku, S., Haga, A., Watanabe, H., Raz, A., 1998. Expression and secretion of neuroleukin/phosphohexose isomerase/maturation factor as autocrine motility factor by tumor cells. Cancer Res. 58:2667-2674.
Ober, E.A., Schulte-Merker, S., 1999. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev. Biol. 215:167-181.
Pei, H., Noushmehr, H., Costa, J., Ouspenskaia, M., Elkahloun, A., Feldman, B., 2007. An early requirement for maternal FoxH1 during zebrafish gastrulation. Dev. Biol. 310:10-22.
Phuong U.L., Benlimame, N., Lagana, A., Raz, A., Nabi, I.R., 2000. Clathrin-mediated endocytosis and recycling of autocrine motility factor
receptor to fibronectin fibrils is a limiting factor for NIH-3T3 cell motility Journal of Cell Science 113:3227-3240.
Plemper, R.K., Wolf, D.H., 1999. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24:266-270.
Ponting, C.P., 2000. Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. Biochem. J. 351: 527-535.
Postlethwait, J., Amores, A., Cresko, W., Singer, A., Yan, W.L., 2004.
Subfunctioning partitioning, the teleost radiation, and the annotation of the human genome. Trends Genet. 20:481-490.
Raub, T.J., Kuentzel, S.L., 1989. Kinetic and morphological evidence for endocytosis of mammalian cell integrin receptors by using an anti-fibronectin receptor β subunit monoclonal antibody. Exp. Cell Res.184:407-426.
Repiso, A., Andres, R., Climent, F., Urena, J.M., 2008. Expression patterns in mouse embryos of neuroleukin/glucose-6-phosphate isomerase and autocrine motility factor receptor. Anat. Histol. Embryol. 5:380-382.
Ridley, A.J., Hall, A., 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389-399.
Sabel, J., d’Alencon, C., O’Brien, E., Otterloo, E., Lutz, K., Cuykendall, T.,
Schutte, B., Houston, D., Cornell, R., 2009. Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos. Dev. Biol. 325:249-262.
Sakaguchi, T., Kikuchi, Y., Kuroiwa, A., Takeda, H., Stainier, D.Y., 2006. The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development 133:4063-4072.
Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H., Sato, M., 1990. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5:519-524.
Shimizu, K., Tani, M., Watanabe, H., Nagamachi, Y., Niinaka, Y., Shiroishi, T., Ohwada, S., Raz, A., 1999. The autocrine motility factor receptor gene encodes a novel type of seven transmembrane protein. FEBS Letters 456: 295-300.
Shimizu, T., Yabe, T., Muraoka, O., Yonemura, S., Aramaki, S., Hatta, K., Bae, Y.K., Nojima, H., Hibi, M., 2005. E-cadherin is required for gastrulation cell movements in zebrafish. Mech. Dev. 122:747-763.
Shen, Y., Ballar, P., Fang, S., 2006. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha-1-antitrypsin. Biochem. Biophys. Res. Commun. 349:1285-1293.
Siddiqui, M., Sheikh, H., Tran, C., Bruce, A.E.E., 2010. The tight junction component claudin E is required for zebrafish epiboly. Dev. Dyn. 239: 715-722.
Silletti, S., Watanabe, H., Hogan, V., Nabi, I.R., Raz, A., 1991. Purification of B16-F1 melanoma autocrine motility factor and its receptor. Cancer Research 51:3507-3511.
Slanchev, K., Carney, T.J., Stemmler, M.P., Koschorz, B., Amsterdam, A., Schwarz,
H., Hammerschmidt, M., 2009. The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet. 5:e1000563.
Solnica-Krezel, L., Driever, W., 1994. Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 120:2443-2455.
Song, B.L., Sever, N., DeBose-Boyd, R.A., 2005. Gp78 a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell. 19: 829-840.
Spitsbergen, J.M., Kent, M.L., 2003. The state of the art of the zebrafish model for toxicology and toxicopathology research-advantages and current limitations.
Toxicol. Pathol. 31:62-87.
Stachel, S.E., Grunwald, D.J., Myers, P.Z., 1993. Lithium perturbation
and goosecoid expression identify a dorsal specification pathway
in the pregastrula zebrafish. Development 117:1261-1274.
Strähle, U., Jesuthasan, S., 1993. Ultraviolet irradiation impairs epiboly in zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly. Development 119: 909-919.
Stainier, D.Y., 2001. Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2:39-48.
Terman, B.I., Carrion, M.E., Kovacs, E., Rasmussen, B.A., Eddy, R.L., Shows, T.B., 1991. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6:1677-1683.
Trinh, L.A., Stainier, D.Y., 2004. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev. Cell 6:371-382.
Trinkaus, J.P., 1951. A study of mechanisms of epiboly in the egg of Fundulus heteroclitus. J. Exp. Zool. 118:269-320.
Trinkaus, J.P., 1993. The yolk syncytial layer of Fundulus: its origin and history and its significance for early embryogenesis. J. Exp. Zool. 265:258-284.
Tsutsumi, S., Gupta, S.K., Hogan, V., Collard, J.G., Raz, A., 2002. Activation of small GTPase Rho is required for autocrine motility factor signaling. Cancer Res. 62:4484-4490.
Tsai, Y.C., Mendoza, A., Mariano, J.M., Zhou, M., Kostova, Z., Chen, B., Veenstra, T., Hewitt, S.M., Helman, L.J., Khanna, C., Weissman, A.M., 2007. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat. Med. 13:1504-1509.
Watanabe, H., Carmi, P., Hogan, V., Raz, T., Silletti, S., Nabi, I.R., Raz, A., 1991. Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. J. Biol. Chem. 266:13442-13448.
Watanabe, H., Takehana, K., Date, M., Shinozaki, T., Raz, A., 1996. Tumor Cell Autocrine Motility Factor Is the Neuroleukin/Phosphohexose Isomerase Polypeptide1. Cancer Research 56:2960-2963.
Wilkins, S.J., Yoong, S., Verkade, H., Mizoguchi, T., Plowman, S.J., Hancock, J.F.,Kikuchi, Y., Heath, J.K., Perkins, A.C., 2008. Mtx2 directs zebrafish morphogenetic movements during epiboly by regulating microfilament formation. Dev. Biol. 314:12-22.
Xu, W., Seiter, K., Feldman, E., Ahmed, T., Chiao, J.W., 1996. The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood 87:4502-4506.
Yanagawa, T., Funasaka, T., Tsutsumi, S., Watanabe, H., Raz, A., 2004. Novel roles of the autocrine motility factor/phosphoglucose isomerase in tumor malignancy. Endocr. Relat. Cancer 11:749-759.
Zalik, S.E., Lewandowski, E., Kam, Z., Geiger, B., 1999. Cell adhesion
and the actin cytoskeleton of the enveloping layer in the zebrafish embryo during epiboly. Biochem. Cell Biol. 77: 527-542.
Zhi, J., Sommerfeldt, D.W., Rubin, C.T., Hadjiargyrou, M., 2001. Differential expression of neuroleukin in osseous tissues and its involvement in mineralization during osteoblast differentiation. J. Bone Miner. Res. 16:1994-2004.
Zon, L.I., Peterson, R.T., 2005. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44.
鄧嘉宜,2009。自分泌移動因子受器在斑馬魚胚胎的基因表現及功能研究。國立高雄海洋科技大學生物技術系碩士學位論文。