跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張晉維
研究生(外文):Chin - Wei Chang
論文名稱:斑馬魚自分泌移動因子受器(amfr)在早期胚胎發育功能之研究
論文名稱(外文):Functional study of zebrafish autocrine motility factor receptor (amfr) during embryonic development
指導教授:林文文林文文引用關係
指導教授(外文):Wen-Wen Lin
口試委員:高孝偉黃胤唐林文文
口試委員(外文):Hsiao-Wei KaoYing-Tang HuangWen-Wen Lin
口試日期:2011-06-30
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:海洋生物技術研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:自分泌移動因子受器卵黃融合層外包微小管 / 小管素
外文關鍵詞:amfrYSLepibolyMicrotubule / tubulin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
自分泌移動因子受器(AMFR)為分子量78 kDa的醣蛋白,因此又稱為gp78。
AMFR為多功能的蛋白質,當位在細胞表面時,會做為細胞激素的受器,透過與配體的結合來刺激細胞的移行。位在內質網膜上時,則扮演E3汎素蛋白接合酵素( E3 ubiquitn ligase)的角色, 協助內質網膜上的蛋白質降解作用。AMFR在臨床研究上,常做為癌症預後的指標,但目前對於AMFR在胚胎發育的功能與機制尚不明瞭。因此我們選擇斑馬魚做為研究的動物,主要分析在斑馬魚中amfr在胚胎發育早期的功能及作用機制為何。利用全覆式定位雜交來偵測amfr於胚胎發育早期的基因表現,在胚胎受精後3.3小時,amfr表現於卵黃融合層中(yolk syncytial layer, YSL)中,一直到原腸晚期都可觀察到amfr表現於YSL上,由於YSL在早期胚胎發育扮演重要的角色,因此推測amfr與YSL的功能上具有關聯性。利用反義股morpholino RNA抑制斑馬魚胚胎amfr基因的表現,造成缺陷表現型的產生。除了在原腸時期的外包(epiboly)有遲緩的情形外,在器官發育也有圍心腔腫大、腦發育不全、肌肉畸型、尾部彎曲以及卵黃囊延伸萎縮等現象。隨著注射劑量的提升,缺陷表現型的比例也會隨之升高。接著研究外包的遲緩是否會影響三胚層的形成,造成晚期發育時器官的各種缺陷。藉由全覆式定位雜交分析中內胚層(gsc)、中胚層(ntl)及內胚層(sox32)的標記(marker),觀察amfr基因表現被抑制的胚胎發育情形。結果顯示amfr基因表現被抑制的胚胎,會導致中內胚層、中胚層及內胚層細胞的移行遲緩。進一步探討造成外包遲緩的機制為何,利用微小管/小管素分析套組進行分析,經過紫杉醇處理與amfr基因表現被抑制的胚胎,發現微小管的含量明顯高於野生型的胚胎,小管素則無明顯的差異性。再將胚胎進行免疫組織染色,經過紫杉醇處理過的胚胎,發現有緻密的束狀卵黃細胞微小管的形成,而受到amfr基因表現抑制的胚胎也有相似的情形。我們的結果顯示,amfr在斑馬魚早期胚胎發育,表現於YSL且對於原腸期外包的進行及三胚層的生成皆有重要性,並且具有促進微小管解聚合的能力。

Autocrine motility factor receptor (AMFR) is a glycoprotein originally named gp78. AMFR/gp78 plays a dual role as a cytokine receptor on the cell surface or as an E3 ubiqui¬tin ligase involved in endoplasmic reticulum associated degradation (ERAD). AMFR has important clinical implication, which has prognostic value in clinical cancer research. However, the exact function of AMFR in embryo¬nic development remains un¬clear. Using in situ hybridization to detect amfr mRNA in zebrafish embryos, we found that amfr mRNA was localized in blastomere and yolk syncytial layer (YSL) at mid-blastula stage. The amfr expression patten is correlated with the development of YSL from mid-blastula to late gastrulation. YSL appears to play an important role in the formation of 3 germ layers, therefore we pro¬pose that amfr is essential to the function of YSL. Antisense morpholino knock¬down of amfr pro¬duced defective phenotypes and caused epibolic delay in zebrafish embryos. Defective phenotypes of amfr knockdown embryos include bent tail, pericar¬dial edema, malformed muscles, cerebral hypoplasia and abnormal yolk cell extension. The percentage of defective phenotypes increased as the dosage of amfr antisense morpholino injection increased. We found that amfr morphant with epib¬oly delay also exhibited abnormalities in mesoendodermal, mesodermal and endo¬dermal cell migration. To study the mechanism of epiboly delay caused by amfr knockdown, we analyzed the effect on microtubule by assessing microtubule and tubulin contents in amfr knockdown em¬bryos. Our analyses indicated that the con¬tent of microtubule increase in embryos treated with microtubule stabiliz¬ing agent taxol and in amfr knockdown embryos. Immunohistochemical analysis also showed that both amfr knockdown and taxol treatment produced dense and bundles of microtubule in yolk cytoplasmic layer. These results suggest that amfr knock¬down inhibits the depolymertization of yolk cell microtubule. We propose that amfr expressed in the YSL functions in the epibolic movement and formation of three germ layers.
目錄 …………………………………………………………………………… i

表目錄 ………………………………………………………………………… iv

圖目錄 ………………………………………………………………………… v

中文摘要 ……………………………………………………………………… 1

英文摘要 ……………………………………………………………………… 2


壹、 前言……………………………………………………………………… 4

一、AMFR/gp78蛋白質結構………………………………………………… 4

二、AMFR的配體…………………………………………………………… 4

三、AMFR於細胞中的功能…………………………………………………… 5

1. 細胞膜上的功能 ……………………………………………………… 5

2. 內質網膜上的功能…………………………………………………… 6

四、AMFR/AMF於惡性種瘤的相關性……………………………………… 8

五、AMFR在早期小鼠胚胎的表現………………………………………… 10

六、斑馬魚amfr在早期胚胎發育的基因功能……………………………… 10

1. 斑馬魚作為遺傳及發育的動物模式………………………………… 10

2. 斑馬魚amfr於早期胚胎發育的表現………………………………… 11

七、斑馬魚的卵黃融合層(Yolk syncytial layer, YSL) ……………………… 11

八、外包(Epiboly)相關機制…………………………………………………… 13

1. 微小管(Microtubule) ………………………………………………… 13

2. 緊密接合(Tight junction)……………………………………………… 14

3. 細胞移行(Cell migration)……………………………………………… 15

九、實驗目的………………………………………………………………… 15

貳、實驗材料與方法…………………………………………………………… 17

一、實驗動物:斑馬魚………………………………………………………… 17

二、核醣核酸探針的製備……………………………………………………… 17

1. 粹取總核醣核酸(Total RNA extraction)……………………………… 17

2. RT反應成cDNA……………………………………………………… 18

3. PCR反應……………………………………………………………… 18

4. 試管內轉錄反應(in vitro transcription)製作RNA探針……………… 19

三、全覆式定位雜交…………………………………………………………… 19

四、基因表現抑制實驗………………………………………………………… 21

1. 顯微注射(Microinjection)……………………………………………… 21

2. amfr反義股及控制股反義股的製備………………………………… 22

五、胎胎外包百分比的測量…………………………………………………… 23

六、微小管(Microtubulin)含量的分析………………………………………… 23

七、胚胎微小管免疫組織染色(Immunohistochemstry)……………………… 24

八、顯微鏡……………………………………………………………………… 26

參、實驗結果………………………………………………………………… 27

一、斑馬魚amfr基因表現於卵黃融合層…………………………………… 27

二、利用amfr morpholino抑制斑馬魚中amfr基因的表現………………… 27

1. 抑制斑馬魚胚胎amfr基因的表現,產生了缺陷表現型…………… 27

2. 提升amfr morpholino的注射劑量會增加缺陷表現型的百分比…… 27

3. 抑制amfr 基因表現產生三種缺陷表現型,Type I、Type II及
Type III………………………………………………………………… 28

4. amfr缺陷表現型大多為Type II以及Type III………………………… 29

5. 抑制amfr基因表現導致原腸期外包顯著遲緩……………………… 29

三、抑制amfr基因的表現影響了三胚層的形成…………………………… 30

1. 抑制amfr的基因表現會對原腸期中內胚層(mesoendoderm)細胞的移行造成影響………………………………………………………… 30

2. 抑制amfr的基因表現會對中胚層細胞的移行造成影響…………… 31

3. 抑制amfr的基因表現造成外包的遲緩,同時也會使內胚層細胞移行遲緩………………………………………………………………… 31

四、抑制amfr表現會影響YSN及微小管穩定性………………………… 32

1. 抑制amfr基因表現會抑制微小管的解聚合能力…………………… 32

2. 利用免疫組織染色觀察胚胎原腸晚期的微小管…………………… 33

3. 抑制amfr的基因表現會使卵黃細胞產生緻密的束狀微小管……… 33

肆、討論……………………………………………………………………… 35

伍、參考文獻………………………………………………………………… 40

表目錄

Table 1. Sequences of antisense morpholinos……………………………… 48

Table 2. Phenotypic analysis of amfr knockdown morphants……………… 49

Table 3. Embryos show significant decrease in epiboly percentage amfr knockdown morphants……………………………………………… 50

Table 4. Embryos treated with taxol and nocodazole displayed epiboly delay 51

Table 5. Quantitative measurement of the relative amount of microtubule present in the pellets of microtubule/tubulin assay………………… 52




圖目錄

Fig. 1. Whole mount in situ hybridization showing amfr mRNA expression in zebrafish early development……………………………………… 53

Fig. 2. Gene structure and antisense morpholinos of zebrafish amfr
(BC057411) ………………………………………………………… 54

Fig. 3. Morphological phenotypes of amfr knockdown embryos…………… 55

Fig. 4. amfr knockdown caused defective morphant phenotypes in a dosage dependent manner…………………………………………………… 56

Fig. 5. amfr knockdown caused epiboly delay in late gastrulation stage…… 57

Fig. 6. Three types of amfr knockdown morphant…………………………… 58

Fig. 7. Defective rates of three types of amfr knockdown morphants with different dosages……………………………………………………… 59

Fig. 8. amfr knockdown caused epiboly delay in a dose dependent manner… 60

Fig. 9. Zebrafish amfr morphants exhibit delay in the migration of mesoendodermal cells………………………………………………… 61

Fig.10. Zebrafish amfr morphants exhibit delay in the migration of mesodermal cells……………………………………………………… 62

Fig.11. Zebrafish amfr morphants exhibit delay in the migration of endodermal cell……………………………………………………… 63

Fig.12. Microtubule/tubulin assay reveals the increase of microtubule in amfr knockdown embryos………………………………………………… 64

Fig.13. Western blotting data of microtubule/tubulin assay quantified by density detection software from three separate experiments………… 65


Fig.14. Organization of yolk cell microtubules in wild type embryos stained by immunohistochemistry…………………………………………… 66

Fig.15. Knockdown of amfr increases the formation of dense and bundles of microtubules in yolk cell……………………………………………… 67

Supplementary Fig. S1………………………………………………………… 68

Supplementary Fig. S2………………………………………………………… 69

Aleström, P., Holter, J.L., Nourizadeh-Lillabadi, R., 2006. Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol. 24:15-21.

Babb, S.G., Marrs, J.A., 2004. E-cadherin regulates cell movements and
tissue formation in early zebrafish embryos. Dev. Dyn. 230:263-277.

Baughan, M.A., Valentine, W.N., Paglia, D.E., Ways, P.O., Simons, E.R., DeMarsh, Q.B., 1968. Hereditary hemolytic anemia associated with glucosephophate isomerase (GPI) deficiency a new enzyme defect of human erythrocytes. Blood 32:236-249.

Benlimame, N., Simard, D., Nabi, I.R., 1995. Autocrine motility factor
receptor is a marker for a distinct tubular membrane organelle. J. Cell Biol.
129:459-471.

Benlimame, N., Le, P.U., Nabi, I.R., 1998. Localization of autocrine
motility factor receptor to caveolae and clathrin-independent internalization
of its ligand to smooth endoplasmic reticulum. Mol. Biol. Cell 9:773-1786.

Betchaku, T., Trinkaus, J.P., 1978. Contact relations, surface activity, and cortical
microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of fundulus before and during epiboly. J. Exp. Zool. 206:381-426.

Biederer, T., Volkwein, C., Sommer, T., 1997. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806-1809.

Bonifacino, J.S., Weissman, A.M., 1998. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev. Cell Dev. Biol. 14:19-57.

Brandner, J.M., 2009. Tight junctions and tight junction proteins in mammalian epidermis. Eur. J. Pharm Biopharm 72:289-294.

Brodsky, J.L., McCracken, A.A., 1999. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10:507-513.

Betchaku, T., Trinkaus, J.P., 1978. Contact relations, surface activity and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of Fundulus before and during epiboly. J. Exp. Zool. 206:381-426.

Carvalho, L., Stuhmer, J., Bois, J.S., Kalaidzidis, Y., Lecaudey, V., Heisenberg, C. P., 2009. Control of convergent yolk syncytial layer nuclear movement in zebrafish. Development 136:1305-1315.

Chaput, M., Claes, V., Portetelle, D., Cludts, I., Cravador, A., Burny, A., Gras, H., Tartar, A., 1988. The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332:454-455.

Chui, C.G., St-Pierre, P., Nabi, I.R., Wiseman, S.M., 2008. Autocrine motility factor receptor: a clinical review. Expert Rev. Anticancer Ther. 8:207-217.

Chen, S., Kimelman, D., 2000. The role of the yolk syncytial layer in germ layer patterning in zebrafish. Development 127:4681-4689.

Chen, B., Mariano, J., Tsai, Y.C., Chan, A.H., Cohen, M., Weissman, A.M., 2006. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc. Natl. Acad. Sci. U.S.A. 103:341-346.

Cheng, J.C., Miller, A.L., Webb, S.E., 2004. Organization and function
of microfilaments during late epiboly in zebrafish embryos. Dev. Dyn. 231: 313-323.

D’Amico, L.A., Cooper, M.S., 2001. Morphogenetic domains in the yolk syncytial
layer of axiating zebrafish embryos. Dev. Dyn. 222:611-624.

Dickmeis, T., Mourrain, P., Saint-Etienne, L., Fischer, N., Aanstad, P., Clark,
M., Strahle, U., Rosa, F., 2001. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev. 15:1487-1492.

Dooley, K., Zon, L.I., 2000. Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 10:252-256.

Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S.J., Moynihan, J., Paw,
B.H., Drejer, A., Barut, B., Zapata, A., Law, T.C., Brugnara, C., Lux, S.E., Pinkus, G.S., Pinkus, J.L., Kingsley, P.D., Palis, J., Fleming, M.D., Andrews, N.C., Zon, L.I., 2000. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776-781.

Fang, S., Lorick, K.L., Jensen, J.P., Weissman, A.M., 2003. RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin. Cancer Biol. 13:5-14.

Faik, P., Walker, J.I., Redmill, A.A., Morgan, M.J., 1988. Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3' sequences. Nature 332:455-457.

Fairbank, M., St-Pierre, P., Nabi I.R., 2009. The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. Molecular BioSystems 5:793-801

Folkman, J., Watson, K., Ingber, D., Hanahan, D., 1989. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58-61.

Funasaka, T., Haga, A., Raz, A., Nagase, H., 2001. Tumor autocrine motility factor is an angiogenic factor hat stimulates endothelial cell motility. Biochem. Biophys. Res. Commun. 284:1116-1125.

Funasaka, T., Haga, A., Raz, A., Nagase, H., 2002. Autocrine motility factor secreted by tumor cells upregulates vascular endothelial growth factor receptor (Flt-1) expression in endothelial cells. Int. J. Cancer 101:217-223.
Gurney, M.E., Apatoff, B.R., Spear, G.T., Baumel, M.J., Antel, J.P., Bania, M.B., Reder, A.T., 1986a. Neuroleukin: a lymphokine product of lectin-stimulated T cells. Science 234:574-581.

Gurney, M.E., Heinrich, S.P., Lee, M.R., Yin, H.S., 1986b. Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science 234:566-574.

Goldsmith, P., 2004. Zebrafish as a pharmacological tool: the how, why, and when. Curr. Opin. Pharmacol. 4:1-9.

Goetz, J.G., Genty, H., St-Pierre, P., Dang, T., Joshi, B., Sauve, R., Vogl, W., Nabi, I.R., J. Cell Sci., 2007. Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. Journal of cell science 120:3553-3564.

Hall, A., 1990. The cellular functions of small GTP-binding proteins. Science 249:635-640.

Hall, A., 1998. Rho GTPases and the actin cytoskeleton. Science 279:509-514.

Haga, A., Tanaka, N., Funasaka, T., Hashimoto, K., Nakamura, K.T., Watanabe, H., Raz, A., Nagase, H., 2006. The autocrine motility factor (AMF) and AMF-receptor combination needs sugar chain recognition ability and interaction using the C-terminal region of AMF. J. Mol. Biol. 358:741-753.

Hershko, A., Ciechanover, A., 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425-479.

Hill, A.J., Teraoka, H., Heideman, W., Peterson, R.E., 2005. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci. 86:6-19.

Holloway, B.A., Sol Gomez de la Torre Canny., Ying, Y., Slusarski, D.C., Freisinger, C.M., Roland, D., Chou1M.M., Wagner D.S., , Mullins M.C., 2009. A novel role for MAPKAPK2 in morphogenesis during zebrafish development. PloS. Genet. 5:e1000413.

Hsu, H.J., Liang, M.R., Chen, C.T., Chung, B.C., 2006. Pregnenolone stabilizes microtubules and promotes zebrafish embryonic cell movement. Nature 439:480-483.
Isken, A., Holzschuh, J., Lampert, J.M., Fischer, L., Oberhauser, V., Palczewski, K., von Lintig, J., 2007. Sequestration of retinyl esters is essential for retinoid signaling in the zebrafish embryo. J. Biol. Chem. 282:1144-1151.

Kane, D.A., McFarland K.N., Warga R.M., 2005. Mutations in half baked
E-cadherin block cell behaviors that are necessary for teleost epiboly. Development 132:1105-1116.

Kawahara, A., Nishi, T., Hisano, Y., Fukui, H., Yamaguchi, A., Mochizuki, N., 2009. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524-527.

Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203:253-310.

Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B., Stainier, D.Y., 2001. Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 15:1493-1505.

Köppen, M., Ferna´ndez, B.G., Carvalho, L., Jacinto, A., Heisenberg, C.P., 2006. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development 133:2671-2681.

Lampert, J.M., Holzschuh, J., Hessel, S., Driever, W., Vogt, K., von Lintig, J., 2003. Provitamin A conversion to retinal via the beta-carotene-15,15'-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development 130:2173-2186.

Le, P.U., Benlimame, N., Lagana, A., Raz, A., Nabi, I.R., 2000. Clathrin-mediated
endocytosis and recycling of autocrine motility factor receptor to fibronectin fibrils is a limiting factor for NIH-3T3 cell motility. J. Cell Sci. 113: 3227-3240.

Lepage, S.E., Bruce, A.E.E., 2010. Zebrafish epiboly: mechanics and mechanisms. Int J. Dev. Biol. 54:1213-1228.

Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., Ferrara, N., 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306-1309.

Lee, J.N., Song, B., DeBose-Boyd, R.A., Ye, J., 2006. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem. 281:39308-39315.

Liotta, L.A., Kleinerman, J., Saidel, G.M., 1974. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34:997-1004.

Liotta, L.A., Mandler, R., Murano, G., Katz, D.A., Gordon, P.K., Chiang, Schiffmann, E., 1986. Tumor cell autocrine motility factor. Proc. Natl. Acad. Sci. U.S.A. 83:3302-3306.

Liu, L., We, G., 2007. Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary. Biol. Reprod. 76:294-301.

McFarland, K.N., Warga, R.M., Kane, D.A., 2005. Genetic locus half baked is
necessary for morphogenesis of the ectoderm. Dev. Dyn. 233:390-406 .

Meusser, B., Hirsch, C., Jarosch E., Sommer, T., 2005. ERAD: the long road to destruction. Nat. Cell Biol. 7:766-772.

Mizuno, T., Yamaha, E., Wakahara, M., Kuroiwa, A., Takeda, H., 1996. Mesoderm induction in zebrafish. Nature 383:131-132.

Montero, J.A., Carvalho, L., Wilsch-Brauninger, M., Kilian, B., Mustafa C., Heisen-Berg, C.P., 2005. Shield formation at the onset of zebrafish gastrulation. Development 132:1187-1198.

Nabi, I.R., Raz, A., 1987. Cell shape modulation alters glycosylation of a metastatic melanoma cell-surface antigen. International Journal of Cancer 40:396-402.

Nabi, I.R., Watanabe, H., Raz, A., 1990. Identification of B16-F1 melanoma
autocrine motility-like factor receptor. Cancer Res. 50:409-414.

Nair, S., Schilling, T.F., 2008. Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science 322:89-92.

Ng, T., Shima, D., Squire, A., Bastiaens, P.I., Gschmeissner, S., Humphries,
M.J., Parker, P.J., 1999. PKCa regulates β1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J. 18:3909-3923.

Niinaka, Y., Paku, S., Haga, A., Watanabe, H., Raz, A., 1998. Expression and secretion of neuroleukin/phosphohexose isomerase/maturation factor as autocrine motility factor by tumor cells. Cancer Res. 58:2667-2674.

Ober, E.A., Schulte-Merker, S., 1999. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev. Biol. 215:167-181.

Pei, H., Noushmehr, H., Costa, J., Ouspenskaia, M., Elkahloun, A., Feldman, B., 2007. An early requirement for maternal FoxH1 during zebrafish gastrulation. Dev. Biol. 310:10-22.

Phuong U.L., Benlimame, N., Lagana, A., Raz, A., Nabi, I.R., 2000. Clathrin-mediated endocytosis and recycling of autocrine motility factor
receptor to fibronectin fibrils is a limiting factor for NIH-3T3 cell motility Journal of Cell Science 113:3227-3240.

Plemper, R.K., Wolf, D.H., 1999. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24:266-270.

Ponting, C.P., 2000. Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. Biochem. J. 351: 527-535.

Postlethwait, J., Amores, A., Cresko, W., Singer, A., Yan, W.L., 2004.
Subfunctioning partitioning, the teleost radiation, and the annotation of the human genome. Trends Genet. 20:481-490.

Raub, T.J., Kuentzel, S.L., 1989. Kinetic and morphological evidence for endocytosis of mammalian cell integrin receptors by using an anti-fibronectin receptor β subunit monoclonal antibody. Exp. Cell Res.184:407-426.

Repiso, A., Andres, R., Climent, F., Urena, J.M., 2008. Expression patterns in mouse embryos of neuroleukin/glucose-6-phosphate isomerase and autocrine motility factor receptor. Anat. Histol. Embryol. 5:380-382.

Ridley, A.J., Hall, A., 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389-399.

Sabel, J., d’Alencon, C., O’Brien, E., Otterloo, E., Lutz, K., Cuykendall, T.,
Schutte, B., Houston, D., Cornell, R., 2009. Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos. Dev. Biol. 325:249-262.

Sakaguchi, T., Kikuchi, Y., Kuroiwa, A., Takeda, H., Stainier, D.Y., 2006. The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development 133:4063-4072.

Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H., Sato, M., 1990. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5:519-524.

Shimizu, K., Tani, M., Watanabe, H., Nagamachi, Y., Niinaka, Y., Shiroishi, T., Ohwada, S., Raz, A., 1999. The autocrine motility factor receptor gene encodes a novel type of seven transmembrane protein. FEBS Letters 456: 295-300.

Shimizu, T., Yabe, T., Muraoka, O., Yonemura, S., Aramaki, S., Hatta, K., Bae, Y.K., Nojima, H., Hibi, M., 2005. E-cadherin is required for gastrulation cell movements in zebrafish. Mech. Dev. 122:747-763.

Shen, Y., Ballar, P., Fang, S., 2006. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha-1-antitrypsin. Biochem. Biophys. Res. Commun. 349:1285-1293.

Siddiqui, M., Sheikh, H., Tran, C., Bruce, A.E.E., 2010. The tight junction component claudin E is required for zebrafish epiboly. Dev. Dyn. 239: 715-722.

Silletti, S., Watanabe, H., Hogan, V., Nabi, I.R., Raz, A., 1991. Purification of B16-F1 melanoma autocrine motility factor and its receptor. Cancer Research 51:3507-3511.

Slanchev, K., Carney, T.J., Stemmler, M.P., Koschorz, B., Amsterdam, A., Schwarz,
H., Hammerschmidt, M., 2009. The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet. 5:e1000563.

Solnica-Krezel, L., Driever, W., 1994. Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 120:2443-2455.

Song, B.L., Sever, N., DeBose-Boyd, R.A., 2005. Gp78 a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell. 19: 829-840.

Spitsbergen, J.M., Kent, M.L., 2003. The state of the art of the zebrafish model for toxicology and toxicopathology research-advantages and current limitations.
Toxicol. Pathol. 31:62-87.

Stachel, S.E., Grunwald, D.J., Myers, P.Z., 1993. Lithium perturbation
and goosecoid expression identify a dorsal specification pathway
in the pregastrula zebrafish. Development 117:1261-1274.

Strähle, U., Jesuthasan, S., 1993. Ultraviolet irradiation impairs epiboly in zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly. Development 119: 909-919.

Stainier, D.Y., 2001. Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2:39-48.

Terman, B.I., Carrion, M.E., Kovacs, E., Rasmussen, B.A., Eddy, R.L., Shows, T.B., 1991. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6:1677-1683.

Trinh, L.A., Stainier, D.Y., 2004. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev. Cell 6:371-382.

Trinkaus, J.P., 1951. A study of mechanisms of epiboly in the egg of Fundulus heteroclitus. J. Exp. Zool. 118:269-320.

Trinkaus, J.P., 1993. The yolk syncytial layer of Fundulus: its origin and history and its significance for early embryogenesis. J. Exp. Zool. 265:258-284.

Tsutsumi, S., Gupta, S.K., Hogan, V., Collard, J.G., Raz, A., 2002. Activation of small GTPase Rho is required for autocrine motility factor signaling. Cancer Res. 62:4484-4490.

Tsai, Y.C., Mendoza, A., Mariano, J.M., Zhou, M., Kostova, Z., Chen, B., Veenstra, T., Hewitt, S.M., Helman, L.J., Khanna, C., Weissman, A.M., 2007. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat. Med. 13:1504-1509.

Watanabe, H., Carmi, P., Hogan, V., Raz, T., Silletti, S., Nabi, I.R., Raz, A., 1991. Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. J. Biol. Chem. 266:13442-13448.

Watanabe, H., Takehana, K., Date, M., Shinozaki, T., Raz, A., 1996. Tumor Cell Autocrine Motility Factor Is the Neuroleukin/Phosphohexose Isomerase Polypeptide1. Cancer Research 56:2960-2963.

Wilkins, S.J., Yoong, S., Verkade, H., Mizoguchi, T., Plowman, S.J., Hancock, J.F.,Kikuchi, Y., Heath, J.K., Perkins, A.C., 2008. Mtx2 directs zebrafish morphogenetic movements during epiboly by regulating microfilament formation. Dev. Biol. 314:12-22.

Xu, W., Seiter, K., Feldman, E., Ahmed, T., Chiao, J.W., 1996. The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood 87:4502-4506.

Yanagawa, T., Funasaka, T., Tsutsumi, S., Watanabe, H., Raz, A., 2004. Novel roles of the autocrine motility factor/phosphoglucose isomerase in tumor malignancy. Endocr. Relat. Cancer 11:749-759.

Zalik, S.E., Lewandowski, E., Kam, Z., Geiger, B., 1999. Cell adhesion
and the actin cytoskeleton of the enveloping layer in the zebrafish embryo during epiboly. Biochem. Cell Biol. 77: 527-542.

Zhi, J., Sommerfeldt, D.W., Rubin, C.T., Hadjiargyrou, M., 2001. Differential expression of neuroleukin in osseous tissues and its involvement in mineralization during osteoblast differentiation. J. Bone Miner. Res. 16:1994-2004.

Zon, L.I., Peterson, R.T., 2005. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44.

鄧嘉宜,2009。自分泌移動因子受器在斑馬魚胚胎的基因表現及功能研究。國立高雄海洋科技大學生物技術系碩士學位論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top