(3.236.122.9) 您好!臺灣時間:2021/05/12 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王育崇
研究生(外文):Wang, Yu-Chong
論文名稱:孤立內波與結構物互制作用
論文名稱(外文):Interaction of internal solitary wave and structures
指導教授:謝志敏謝志敏引用關係
指導教授(外文):Hsieh, Chih-Min
口試委員:許榮中蔡立宏謝志敏
口試委員(外文):Hsu, John R-C.Tsai, Li-HungHsieh, Chih-Min
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:海事資訊科技研究所
學門:運輸服務學門
學類:航海學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:104
中文關鍵詞:內波孤立內波
外文關鍵詞:internal waveinternal solitary wave
相關次數:
  • 被引用被引用:4
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:3
本文採用數值方法進行分層流體中內波生成和演化的研究,在雙層流體中製造孤立內波,重力混合塌陷生成的內孤立波及其受地形作用而演變的模擬。文中模擬孤立內波與結構物互制之波形和流場,包括孤立內波的生成、孤立內波的生成通過單一三角形障礙物和通過雙座三角形障礙物案例。本文模式使用 Reynolds Averaged Navier-Stokes 方程式,作為紊流流場的控制方程式,使用 紊流模式來閉合 Reynolds 平均 Navier-Stokes 方程式,自由液面採用流體體積方法來處理。數值計算結果藉由試驗資料驗證,本文數值計算結果與試驗值相當吻合。在驗證本數值模式的準確性之後,本文探討不同參數對孤立內波與孤立內波與障礙物互制作用之影響。這些參數包括數值水槽上下層水深比、障礙物高度、雙障礙物前後間距。上述參數對孤立波通過三角型潛堤時波形與流場的影響,本文做了有系統的探討。此外,本文也討論上舉型和下沉型孤立內波力之生成機制。上述數值計算結果 對瞭解孤立內波特性的特性,將有所助益。
Numerical study of the generation and evolution of internal waves in stratified two-layer fresh/brine water were carried out in the present paper. The propagation and evolution of internal solitary waves generated by gravity collapse. The numerical model is applied to a variety of evolution problems of internal solitary wave (ISW) interacting with obstacles, i.e. internal solitary wave propagating on a flat bed, ISW propagating over a submerged triangular obstacle, and ISW passing over a pair of submerged triangular obstacles. The model calculates the mean flow based on the Reynolds averaged Navier-Stokes (RANS) equations. The model is employed to simulate the flow kinematics and the turbulence effects in the RANS. In order to update the free surface configuration with every time step, the Volume of Fluid (VOF) method is implemented. In our study, we have compared the numerical results with numerical data and found that the agreement between computational and measured data are quite good. After having verified the accuracy of the numerical scheme, effects of different parameters on the propagation of ISW and ISW interacting with solid structures are investigated. These parameters include related to water depth and geometry of submerged triangular obstacle, such as depth ratio between upper and lower layers, the relative obstacle height, and the difference of spacing. In addition, the flow fields near the submerged triangular obstacle were discussed in terms of velocity vectors, and the wave deformation. Finally, the mechanism of elevation and depression ISW in a fresh/brine fluid system are discussed. All of these above results will provide better understanding of main characteristics of the internal solitary wave in the fields.
目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VII
符號說明 VIII
英文縮寫部分 X
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 現場觀測 2
1-2-2 實驗室研究 4
1-2-3 理論模式之研究 8
1-3 研究目的 9
1-4 本文組織 10
第二章 數值模式 11
2-1  FLOW-3D® 軟體簡介 11
2-2 基本控制方程式 13
2-2-1  Navier-Stokes 之控制方程式 13
2-2-2  FLOW-3D® 之控制方程式 14
2-3 數值方法與邊界條件 20
2-3-1 離散方法 20
2-3-2 網格處理方法 21
2-3-3 障礙物處理方法 23
2-3-4 邊界條件 25
2-3-5 數值穩定與收斂 27
2-4 應用電腦輔助模型之設計 29
2-5  FLOW-3D® 模組設定 31
2-6 網格之邊界條件 32
第三章 模式驗證 33
3-1 水平及垂直流速模式驗證 33
3-2 網格獨立測試—孤立內波空間波形分布 39
第四章 結果與討論 35
4-1 孤立內波的生成 35
4-2 單一三角形底床對內波之影響 54
4-3 內波於雙座三角形底床之變化 64
4-4 水粒子軌跡 74
4-5 流線變化 78
4-6 渦度 84
第五章 結論與建議 87
5-1 結論 87
5-2 建議 88
參考文獻 89





圖目錄
圖2.1 FLOW-3D® V9.3 程式介面 11
圖2.2 二維直角網格面積和體積比例係數計算示意圖 17
圖2.3 流體體積分率法之定義示意圖 22
圖2.4 巢狀網格(左)和鏈結網格(右) 22
圖2.5 複雜造型的物件無法以固定網格詳細描述 24
圖2.6 線性波造波模組 30
圖2.7 3D MAX 繪製之 3D 模型圖 30
圖2.8 3D 模型圖於 FAVOR 功能下之顯示 28
圖3.1 下沉型孤立內波實驗量測之水平與垂直流速圖 34
圖3.2 下沉型孤立內波數值計算與實驗量測之水平與垂直流速圖 (Level 1) 35
圖3.3 下沉型孤立內波數值計算與實驗量測之水平與垂直流速圖 (Level 2) 35
圖3.4 下沉型孤立內波數值計算與實驗量測之水平與垂直流速圖 (Level 3) 36
圖3.5 上舉型孤立內波數值計算與實驗量測之水平與垂直流速圖 37
圖3.6 上舉型孤立內波數值計算與實驗量測之水平與垂直流速圖 (Level 1) 37
圖3.7 上舉型孤立內波數值計算與實驗量測之水平與垂直流速圖 (Level 2) 38
圖3.8 上舉型孤立內波數值計算與實驗量測之水平與垂直流速圖 (Level 3) 38
圖3-9 孤立內波數值計算網格系統格點獨立性檢定測試:孤立內波之波形 39
圖4.1 孤立內波波形示意圖 41
圖4.2 內波流場示意圖 41
圖4.3 內波水槽造波情況示意圖 43
圖4.4 穩定下沉型孤立內波流場圖 46
圖4.5 穩定上舉型孤立內波流場圖 48
圖4.6 不穩定下沉型孤立內波流場圖 50
圖4.7 不穩定上舉型孤立內波流場圖 52
圖4.8 單一三角形底床障礙物實驗示意圖 55
圖4.9 內波與障礙物之碎波型態流場圖 57
圖4.10 內波與障礙物之中度作用流場圖 59
圖4.11 內波與障礙物之微量作用流場圖 61
圖4-12 孤立內波通過單一障礙物之波形比較圖 63
圖4.13 雙座三角形底床障礙物實驗示意圖 65
圖4.14 內波通過連續障礙物之流場圖 66
圖4.15 內波通過連續障礙物之流場圖 68
圖4.16 內波通過連續障礙物之流場圖 70
圖4-17 內波通過連續障礙物之流場圖 72
圖4-18 標記質點的面積加權計算示意圖 75
圖4-19 孤立內波通過單一三角底床之各點軌跡圖 76
圖4-20 孤立內波通過單一三角底床之各點軌跡圖 76
圖4-21 孤立內波通過單一三角底床之各點軌跡圖 77
圖4-22 孤立內波通過雙三角底床之各點軌跡圖 77
圖4-23 孤立內波通過雙三角底床之各點軌跡圖 77
圖4-24 孤立內波通過單一三角底床之流線圖 78
圖4-25 孤立內波通過雙三角底床之流線圖 80
圖4-26 孤立內波通過雙三角底床之流線圖 82
圖4-27 孤立內波通過雙三角底床之流線圖 83
圖4-28 孤立內波通過單一三角底床之渦流強度圖 85
圖4-29 孤立內波通過雙三角底床之渦流強度圖 86


表目錄
表1-1 中山大學許榮中教授團隊研究內波之論文整理表 5
表2.1 選擇計算參數之設定總表 31
表2.2 選擇計算參數之設定概述表 31
表2.3定義各網格邊界 32
表4.1 本文模擬案例 41
表4-2 數值模擬孤立內波之條件 42
表4.3 內波之生成之模擬條件 44
表4.4 單一三角形底床實驗之參數 54
表4.5 雙三角形障礙物模擬條件 65
















參考文獻
1.Alpers, W. H., Wang-chen and Lim Hock, “Ovservarion of internal waves in the Andamen sea by ERS SAR,” International Geoscience and Remote Sensing Symposium, Vol. 4, pp. 1518-1520 (1997).
2.Apel, J. R., Holbrook L. R., Liu A. K., and Tsai J. J., “The Sulu Sea internal soliton experiment,” Journal of Physical Oceanography, Vol. 15,pp. 1625-1651 (1985).
3.Balázs Gyüre, Imre, M. Jánosi, “Stratified flow over asymmetric and double bell-shaped obstacles,” Dynamics of Atmospheres and Oceans, Vol. 37, pp. 155-170 (2003).
4.Balmforth, N. B., Ierley G. R., and Young W. R., “Tidal conversion by subcritical topography,” Journal of Physical Oceanography, Vol. 32, pp. 2900-2914 (2002).
5.Benjamin, T. B., “Internal waves of finite amplitude and permanent,” Journal of Fluid Mechanics, Vol. 25, pp. 244-270 (1966).
6.Benney, D. J., “Long non-1inear waves in fluid flows,” Journal of Mathematical Physics, Vol. 45, pp. 52-63 (1966).
7.Chomaz, J. M., Bonneton P., and Hopfinger E. J., “The structure of the near wake of a sphere moving horizontally in a stratified fluid,” Journal of Fluid Mechanics, Vol. 254, pp. 1-21 (1993).
8.Davis, R. E. and Acrivos A., “Solitary internal waves in the deep water,” Journal of Fluid Mechanics, Vol. 29, pp. 593-607 (1967).
9.Duda, T. F., Lynch J. F., and Irish J. D. E. A., “Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea,” IEEE. Journal of Oceanic engineering, Vol. 29(4), pp. 1105-1130 (2004).
10.Fett, R. W. and Rabe K., “Satellite observation of internal wave refraction in the South China,” Geophysical Research Letters, Vol. 4, pp. 189-191 (1997).
11.Garrett, C. J. R. and Munk W. H., “Space-time Scales of Internal Waves,” Geophysical Fluid Dynamics, Vol. 2, pp. 225-264 (1972).
12.Gear, J. A. and Grimshaw R., “A second-order theory for solitary waves in shallow fluids,” Physics of Fluids, Vol. 26(1), pp. 14-29 (1983).
13.Gilreath, H. E. and Brandt A., “Experiments on the Generation of internal in a stratified,” Fluid Journal, Vol. 23(5), pp. 693-700 (1985).
14.Harlow, F. H. and Welch, J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Physics of Fluids, Vol. 8, pp. 2182 (1965).
15.Haury, L. R., Briscoe, M. G., and Orr, M. T., “Tidally generated internal wave packets in Massachusetts Bay,” Nature, pp. 278-312 (1979).
16.Hirt, C. W. and Nichols, B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries,” Journal of Computational Physics, Vol. 39(1), pp. 201-225 (1981).
17.Hopfinger, E. J. and Flor J. B., “Internal waves generated by a moving sphere and its wake in a stratified fluid,” Experiments in Fluids, Vol. 11 pp. 255-261 (1991).
18.Hsu, M. K., Liu A. K., and Liu C., “A study of internal waves in the China seas and Yellow sea using SAR,” Continental Shelf Research, Vol. 20, pp. 389-410 (2000).
19.Inall, M. E., Rippeth T. P., and Sherwin T. J., ”The impact of non-linear waves on the dissipation of internal tidal energy at a shelf break,” Journal of Geophysical Research, Vol. 105, pp. 8687-8705 (2000).
20.Makarov, S. A. and Yu D. “Apparent internal waves in a fluid with exponential density distribution,” Journal of Applied Mechanics and Technical Physics, Vol. 22, pp. 772-779 (1981).
21.Karle, E. B. and Lofquist L., ”Drag on a sphere moving horizontally through a stratified liquid,” Journal of Fluid Mechanics, Vol. 148, pp. 271-284 (1984).
22.Khatiwala S., “Generation of internal tides in an ocean of finite depth, Analytical and nnmerical calculations,” Deep Sea Research, Vol. 50, pp. 3-21 (2003).
23.Legg, S. and Adcrof A., “Internal wave breaking at concave and convex continental slopes,” Journal of Physical Oceanography, Vol. 33, pp. 2224-2246 (2003).
24.Liu, A. K., Chang Y. S., Hsu M. K., and Liang N. K., “Evolution of nonlinear internal waves in China Seas,” Journal of Geophysical Research, Vol. 103, pp. 7997-8008 (1998).
25.Mackinnon, J. A. and Gregg M .C., “Shear and baroclinic energy flux on the summer new England shelf,” Journal of Physical Oceanography, Vol. 33, pp. 1462-1475 (2003).
26.Maxworthy, T., “A note on the internal solity waves produced by tidal flow over a three-dimensional ridge,” Journal of Geophysical Research, Vol. 84, pp. 338-346 (1979).
27.Miehallet, M. and Barthelemy E., “Experimental study of interfacial solitary waves,” Journal of Fluid Mechanics, Vol. 336, pp. 159-177 (1998).
28.Muller., P. and Olbers D. J., “The IWEX spectrum,” Journal of Geophysical Research, Vol. 81, pp. 479-500 (1978).
29.Nash, J. D. and Moum J. N., “Internal hydraulic flows on the continental shelf:high drag states over a small bank,” Journal of Geophysical Research, Vol. 106, pp. 4593-4611 (2011).
30.Osborn, A. R. and Bureh T. L., “Internal solitons in the Andaman Sea,” Science, Vol. 208, pp. 451-460 (1980).
31.Pingree, R. D. and New A. L., “Downward propagation of internal tidal energy into the Bay of Biscay,” Deep Sea Research, pp. 735-758 (1988).
32.Polzin, K. L., Toole J. M., and Schmitt R. W., “Fine scale parameterization of turbulent dissipation,” Journal of Physical Oceanography, Vol. 25, pp. 306-328 (1995).
33.Rodi, W., “Turbulence models for environmental flows,” Prediction Methods for Turbulent Flows, pp. 259-350 (1980).
34.Scase, S. B. and Dalziel A., “Theoretical and experimental investigation into internal waves generated by a translating body,” Journal of Fluid Mechanics, Vol. 498, pp. 289-313 (2004).
35.Shaw, P. T., Ko D. S., and Chao S. Y., “Internal solitary waves induced by flow over a ridge: with applications to the northern South China sea,” Journal of Geophysical, Vol. 23, pp. 163-176 (2009).
36.Simpson, J. H., Rippeth T. P., and Campbell, A., “The phase lag of turbulent dissipation in tidal flow,” Terra Scientific, pp. 57-67 (2000).
37.Small, J., Hallck, Z. Pavey G., ”Observation of large amplitude internal wave at the malin shelf edge during SESAME,” Continental Shelf Research, Vol. 19(11), pp. 1389-1436 (1999).
38.Thorpe, S. A., “A method of producing a shear flow in a stratified fluid,” Journal of Fluid Mechanics, Vol. 32(4), pp. 693-704 (1968).
39.Thorpe, S. A., “On the shape of progressive internal waves,” Phil. Trans. of Roy. Soc. of London, Vol. 263, pp. 563-614 (1986).
40.Voropayev, S. I. and Smirnov S. A., “Vortex streets generated by a moving momentum source in a stratified fluid,” Physics of Fluids, Vol. 15(3), pp. 618~625 (2003).
41.Xu,Z. T., Yao, F. C., and Wang M., “Generation of nonlinear internal waves on continental shelf,” Journal of Hydrodynamics, Vol. 13 (3), pp. 127~ 132 (2001).
42.Yang, J., Zhou S. Z., and Zhou J. X., “Internal wave characteristics at the ASIAEX site in the East China Sea,” IEEE Journal of Oceanic Engineering, Vol. 29, pp. 1054-1060 (2004).
43.Zheng, Q, Susanto R. D., and Ho, C. R. E. A., “Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China sea,” Journal of Geophysical, Vol. 112 (c3), pp. 264-273 (2007).
44.戴世強,「兩層流體界面上的孤立波」,應用數學和力學,第3卷,pp. 721-731 (1982)。
45.方欣華、吳巍、仇德忠,關於南沙海域內波與細結構研究,青島海洋大學學報,第29期,pp. 537-542,(1999)。
46.徐肇廷,海洋內波動力學,科學出版社,北京,(1999)。
47.袁叔堯,鄧九仔,「南海北部內孤立波數學模型」,熱帶海洋,(1999)。
48.蔡樹群,甘子鈞,「南海北部孤立子內波的研究進展」,地球科學進展, 第16卷, pp. 215-219 (2001)。
49.陳信旭,「孤立內波的傳遞及在單斜坡上反射之實驗研究」,國立中山大學海下科技暨應用海洋物理研究所碩士論文(2004)。
50.范植松,耿建,張遠凌,「南海北部內孤立波SAR 遙感反演的初步研究」,中國海洋大學學報 (自然科學版),(2005)。
51.郭青峰,「孤立內波的傳遞及受障礙物影響之實驗研究」,國立中山大學海下科技暨應用海洋物理研究所碩士論文(2005)。
52.郭青峰,許榮中,陳震遠,陳信旭,鄭明宏,「障礙物地形對孤立內波傳遞的影響」,第 27 屆海洋工程研討會論文集,台中,(2005)。
53.鄭明宏,「孤立內波於變動地形之數值模擬」,國立中山大學海下科技暨應用海洋物理研究所碩士論文(2006)。
54.鄭明宏,許榮中,陳震遠,郭青峰,盧典育,「數值模擬孤立內波通過海底山脊的演化」,第 28 屆海洋工程研討會論文集,高雄,(2006)。
55.陳震遠,「內波在斜波及海脊地形的演化實驗」,國立中山大學海下科技暨應用海洋物理研究所博士論文(2006)。
56.盧典育,「變動密躍層厚度對孤立內波傳遞的影響實驗」,國立中山大學海下科技暨應用海洋物理研究所碩士論文(2007)。
57.盧典育,鄭明宏,賴得旺,王瑋宏,陳震遠,許榮中,「變動密躍層厚度對孤立內波傳遞的影響實驗」,第 29 屆海洋工程研討會論文集,台南,(2007)。
58.賴得旺,「孤立內波於大陸階之波型演化實驗」,國立中山大學海下科技暨應用海洋物理研究所碩士論文(2007)。
59.王瑋宏,「孤立內波粒子運動軌跡實驗」,國立中山大學海下科技暨應用海洋物理研究所碩士論文(2008)。
60.付東明,尤雲祥,李巍,「兩層流體中內孤立波與潛體相互作用的數值模擬」,海洋工程,第27卷,pp. 38-44 (2009)。
61.賴耿辰,「表面波與內波相互影響之實驗」,國立中山大學海下科技暨應用海洋物理研究所碩士論文(2009)
62.李群、陳旭、孫麗、徐肇廷,「南海東北部陸架波折處潮-地作用激發水動非線性內波的數值模擬」,力學研究與進展, 第24卷,第6期 (2009)。
63.高國興、王振佔、陳標、劉翠華、張本濤,「陸架區海洋內波傳播特性遙感方法分析」,中國圖像圖形學報,第15卷,第5期 (2010)。
64.張明鴻,「連續內波於擬大陸邊緣傳遞之實驗室實驗」,國立中山大學海下科技暨應用海洋物理研究所碩士論文(2011)。
65.鄭明宏,「實驗及數值方法探討孤立內波在擬大陸斜坡平台的演化」,國立中山大學海下科技暨應用海洋物理研究所博士論文(2011)。




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔