跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 09:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范烈通
研究生(外文):Fan,Lientung
論文名稱:波浪碎波數值模擬之研究
論文名稱(外文):Numerical Simulation of Wave Breakings
指導教授:謝志敏謝志敏引用關係
指導教授(外文):Hsieh,Chihmin
口試委員:楊文昌彭逸凡謝志敏
口試委員(外文):Yang,WenchangPeng,YihferngHsieh,Chihmin
口試日期:2011-07-09
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:海事資訊科技研究所
學門:運輸服務學門
學類:航海學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:49
中文關鍵詞:嵌入邊界法、流體體積法、平台底床、碎波
外文關鍵詞:embedding method, volume of fluid, bar-type beach, wave breaking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:2
本文利用 RANS (Reynolds Averaged Navier-Stokes Equations) 模式求解波浪於平台和沙洲底床碎波過程,進而探討波浪與斜坡地形交互作用後之碎波現象和流場特性。數值模式採用有限體積法,求解雷諾平均 Navier-Stokes 方程式,以期能夠呈現波浪場中非線性與黏性效應的影響,同時配合 紊流模式來模擬紊流效應。其中時間差分項以顯式法來離散,壓力場則藉著預測—修正方式 (predictor-corrector procedure) 來建立,配合交錯網格系統,採用不等間距網格,自由液面採用流體體積法 (Volume of Fluid, VOF),結合嵌入邊界法 (embedding method) 處理複雜地形。數值計算結果藉由試驗資料驗證,本文數值計算結果與試驗值相當吻合。文中模擬波浪與結構物互制之波形和流場,包括孤立波於斜坡上運動及破碎探討、Cn 波通過斜坡溯上、週期波通過平台底床案例、和波浪與週期波通過平台底床案例。文中討論了波浪在斜坡上的溯升和溯降,也探討碎波後的紊流強度分布和流場。
A 2-D numerical model was developed to simulate wave breaking on the barred/stepped beach. The significant benefit of the present study over the traditional way of analyzing wave propagation problems is to apply the RANS (Reynolds Averaged Navier-Stokes) and the embedding method by taking account of the entire nonlinear, viscous and turbulent effects on the physical problem. The model is employed to simulate the flow kinematics and the turbulence effects in the RANS. The RANS is used to simulate the flow field; and the transport equations are discretized by the finite volume method, based on a staggered grid system with variable width and height. The unsteady term is treated by an explicit method. The pressure field is obtained by a predictor-corrector procedure. In order to update the free surface configuration with every time step, the Volume of Fluid (VOF) method is implemented. Coupling the volume of fluid method (VOF) and the embedding method, the treatment of free surface problem and complex bottom topography can be easily reached. The numerical results were compared with existing experimental data. The numerical model is applied to a variety of evolution problems of traveling waves interacting with solid structures and a complex bed, i.e. solitary wave propagating on a sloping bed, Cn waves propagating on a sloping bed, wave breaking on the barred/stepped beach. By using the present numerical model, the mean velocity field and the turbulence distribution under under wave breaking were investigated. The runup and rundown characteristics of the water waves on sloping bed are also discussed.


中文摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
符號說明
英文縮寫部份
第一章 緒論
1-1 研究動機及目的
1-2 前人研究
1-3 本文組織
第二章 RANS方程式
2-1 RANS方程式簡介
2-2 邊界條件
2-2-1自由表面邊界條件
2-2-2初始及邊界條件
2-2-3邊界條件
2-2-4自由表面邊界條件
2-3 數值方法
2-3-1自由表面處理方法
2-3-2複雜地形處理方法
2-4 計算程式
第三章 波浪碎波數值模式之應用與驗證
3-1 模式驗証
3-2 孤立波在斜坡上運動及破碎探討
3-3 Cn 波在斜坡上運動及破碎探討
3-4 沙洲床底
3-5 平台床底
第四章 結論與建議
4-1 結論
4-2 建議
參考文獻


1.Battjes, J. A., “Surf similarity, ” Proceedings of 14th International Conference on Coastal
Engineering, ” Copenhagen, ASCE, pp. 466-480 (1974).
2.Battjes, J. A., “Surf-zone dynamics,” Annual Review of Fluid Mechanics, Vol. 20, pp. 257-293 (1988).
3.Bradford, S.F, “Numerical simulation of surf zone dynamics,” J. Waterw. Port Coast. Ocean Eng., Vol.
126, pp.1-13 (2000).
4.Carrier, G. F., Wu, T. T., and Yeh, H., “Tsunami run-up and draw-down on a plane beach,” Journal of
Fluid Mechanics, Vol. 475, pp. 79-99 (2003).
5.Chang, K. A. and Liu, P. L.-F., “Experimental investigation of turbulence generated by breaking waves
in water of intermediate depth,” Phys. Fluids., Vol. 11, No. 11, pp.3390-3400 (1999).
6.Christensen, E. D. and Deigaard, R., “Large eddy simulation of breaking waves,” Coastal Engineering,
Vol. 42, pp. 53-86 (2001).
7.Cowen, E. A., Sou, I. M., Liu, P. L.-F., and Raubenheimer, B., “Particle image velocimetry
measurements within a laboratory-generated swash zone,” J. Eng. Mech., ASCE., Vol. 129, No.10, pp.
1119-1129 (2003).
8.Dabiri, D. and Gharib, M., “Experimental investigation of the vorticity generation within a spilling
water wave,” Journal of Fluid Mechanics, Vol. 330, pp. 113-139 (1997).
9.Galvin, C. J., “Breaker type classifications of three laboratory beaches, ” Journal of Geophysical
Research, Vol. 73, No. 12 (1968).
10.Hsu, T. W., Hsieh C. M., and R. Hwang, “Using RANS to simulate vortex generation and dissipation
around.submerged breakwaters,” Coastal Engineering, Vol. 51, pp.557-519 (2004).
11.Isobe, M., Nishimura H., and Horikawa K., “ Expressions of perturbation solutions for conservative
waves by using wave height,” Proc. 33th Annu. Conf. of JSCE, Vol. II, pp. 760-761 (1978).
(InJapanese)
12.Johnson, D. B., Raad P. E., and Chen S., “Simulation of Impacts of Fluid Free Surface with Solid
Boundary,” Int J. Numer. Meth. Fluids, Vol. 19, pp. 152-174 (1994).
13.Kawamura, T., “Numerical Simulation of 2-D Turbulent Free-Surface Flow,” Int. Research Center for
Comp. Hydrodynamics (ICCH), Demark (1998).
14.Lai, M.C and Peskin C. S., “An immersed boundary method with formal second-order accuracy and
reduced numerical viscosity.” Journal of computational physics, Vol. 160 (2), pp.705-719 (2000).
15.Launder, B.E., Numerical model for simulating storm induced beach changes. U.S. Army Corps of
Engineers, CERC-89-9 (1989).
16.Lemos, C. M., Wave breaking, Springer-Verlag (1992).
17.Lin, C. and Hwung, H. H., “External and internal flow fields of plunging breakers,” Exp. Fluids.
, Vol. 12, pp. 229-237 (1992).
18.Lin, P. and Liu P. L. F., “A Numerical Study of Breaking Waves in the Surf Zone,” Journal of Fluid
Mechanics, Vol. 359, pp. 239-264 (1998a).
19.Lin, P. and Liu P. L. F., “Turbulence Transport, Vorticity Dynamics Solute Mixing Under Plunging
Breaking Waves in Surf Zone,” Journal of Geophysical Research, Vol. 103, pp. 15677-15694 (1998b).
20.Lin, P., and Liu P. L. F., “ A numerical study of breaking waves in the surf zone. Journal of Fluid
Mechanics, Vol. 350, pp. 239-264 (1998).
21.Miyata, H., “Finite-difference simulation of breaking waves,” Journal of Computational Physics, Vol.
65, pp.179-214 (1986).
22.Nadaoka, K. and Kondoh, T., “Laboratory measurement of velocity filed structure in the surf zone by
LDV,” Coastal Engineering, Vol. 25, pp.125-145 (1982).
23.Ohyama, T. and Nadaoka, K., “Development of a numerical wave tank for analysis of nonlinear and
irregular wave field,” Fluid Dynamics Research, Vol. 8, pp. 231-251 (1991).
24.Ohyama, T. and Nadaoka, K., “Modeling the transformation of nonlinear waves passing over a submerged
dike,” Proceedings of 23th International Coastal Engineering Conference, Venice, ASCE, pp. 526-539
(1992).
25.Ohyama, T. and Nadaoka, K., “Transformation of a nonlinear waves train passing over a submerged
shelf without breaking,” Coastal Engineering, Vol. 24, pp. 1-12 (1994).
26.Patankar, S. V., Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C. (1980).
27.Peregrine, D. H., “Long Waves on a Beach,” Journal of Fluid Mechanics, Vol. 27, pp. 815-882 (1967).
28.Peskin C.S and Printz B. F., “Improved Volume Conservation in the Computation of Flows with Immerse
Elastic Boundaries.” Journal of Computational Physics, Vol. 105 (1), pp 32-46 (1993).
29.Petti, M. and Longo, S., “Turbulence experiments in the swash zone,” Coastal Engineering, Vol. 43,
pp. 1-24 (2001).
30.Pruszak Z., Szmytkiewicz P., Ostrowski R., Skaja M., and Szmytkiewicz M., “ Shallow-water wave
energy in a multi-bar coastal zone. Proceedings of 2008 Joint Chinese- Polish Conference on Coastal
Engineering, pp. 42-58 (2008).
31.Ravoux, J. F., Nadim A., and Haj-Hariri H., “ An embedding method for bluff body flows: interactions
of two side-by-side cylinder wakes,” Theoretical and Computational Fluid Dynamics, Vol. 16 (6), pp.
432-466 (2003).
32.Rodi, W., Turbulent models and their applications in hydraulics-a state of the art review.
International Association for Hydraulic Research, Delft, The Netherlands (1980).
33.Tadepalli S. and Synolakis, C. E., “The run-up of N waves on sloping beaches,” Proc. R. Soc. Lond.
A. Vol. 445, pp. 99-112. (1994).
34.Tang, C. J., Patel V. C., and Landweber L., “Viscous Effects on Propagation and Reflection of
Solitary Waves in Shallow Channels,” Journal of Computational Physics, Vol. 88, No. 1, pp. 86-113
(1990).
35.Ting, F. C. K. and Kirby J. T., “ Observation of undertow and turbulence in a laboratory surf zone,
Coast. Eng., Vol. 24, pp. 51-80 (1994).
36.Tig, F. C. K. and Kirby, J. T., “ Dynamics of surf-zone turbulence in a strong plunging breaker,
Coastal Engineering, Vol. 24, pp. 177-204 (1995).
37.Ting, F. C. K. and Kirby, J. T. “Dynamics of surf-zone turbulence in a spilling breaker,” Coastal
Engineering, Vol. 27, pp. 131- 160 (1996).
38.Wang, Y. and Su C., “Computation of Wave Breaking on Sloping Beach by VOF Method,” Proc. 3nd Int.
Offshore and Polar Engrg. Conf. III, pp. 96-101 (1993).
39.Wijayaratna, N. and Okayasu, A., “DNS of wave transformation, breaking and run-up on sloping beds,
” Proc. 4th Int. Conf. on Hydrodynamics, IAHR, Vol. 2. Yokohama, Japan, pp. 527-532 (2000).
40.Watanabe, Y. and Saeki, H. “Three -dimensional large eddy simulation of breaking wave,” Coastal
Engineering, Vol. 41, pp. 281-301 (1999).
41.Zanke, U. C. E., Hydromeckanik der Gerinne und Kustengewasser, Parey Buchverlag, Berlin (2002).
42.Zhao, Q., Armfield S., and Tanimoto, K., “ Numerical simulation of breaking waves by a multi-scale
turbulence model,” Coast. Eng., Vol. 51, pp.52-80 (2004).
43.謝志敏,「應用 RANS 模擬波浪通過潛堤和沙漣流場」,成功大學水利及海洋工程學系博士論文 (2004)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top