|
[1] M.E.,Taslim, L.A., Bondi, D.M., Kercher, An experimental investigation of heat transfer in an orthogonally rotating channel roughened with 45 deg criss-cross ribs on two opposite walls, ASME Journal of Turbomachinery 113 (1991) 346-353. [2] J.H., Wagner, B.V., Johnson, B.A., Graziani, F.C., Yeh, Heat transfer in rotating serpentine passages with trips normal to the flow, ASME Journal of Turbomachinery 114 (1992) 847-857. [3] B.V., Johnson, J.H., Wagner, G.D., Steuber, G. D., F.C., Yeh, Heat transfer in rotating serpentine passages with trip skewed to the flow, ASME J. Turbomachinery 116 (1994) 113-123. [4] J.A., Parson, J.C., Han, Y.M., Zhang, Effects of model orientation and wall heating condition on local heat transfer in a rotating two-pass square channel with rib turbulators, Int. J. Heat Mass Transfer 38 (1995) 1151-1159. [5] S., Dutta, J.C., Han, C.P., Lee, Local heat transfer in a rotating two-pass ribbed triangular duct with two model orientations, Int. J. Heat Mass Transfer 39 (1996) 707-715. [6] H., Iacovides, D.C., Jackson, G., Kelemenis, B.E., Launder, Y.-M. Yuan, Flow and heat transfer in a rotating U-bend with 450 ribs, Int. J. Heat Fluid Flow 22 (2001) 308-314. [7] T.-M., Liou, M.-Y., Chen, Y.-M. Wang, Heat transfer, fluid flow, and pressure measurements inside a rotating two-pass duct with detached 90-deg ribs”, ASME J. Turbomachinery 125 (2003) 565-574. [8] S.W., Chang, W.D., Morris, Heat transfer in a radially square duct fitted with in-line transverse ribs, Int. J. Thermal Sciences 42 (2003) 267-282. [9] A., Murata, S., Mochizuki, Aiding and opposing contributions of centrifugal buoyancy on turbulent heat transfer in a two-pass transverse- or angled-rib-roughened channel with sharp 1800 turns, Int. J. Heat Mass Transfer 47 (2004) 3721-3743. [10] S.W., Chang, S.W, T.-M., Liou, W.-H., Yeh, J.-H., Hung, J-H, Heat transfer in a radially rotating square-sectioned duct with two opposite walls roughened by 45 degree staggered ribs at high rotation numbers, ASME J. Heat Transfer, 129 (2007) 188-199. [11] S.W. Chang, T.-M. Liou, S.F. Chiou, S.F., Chang, Heat transfer in high-speed rotating trapezoidal duct with rib-roughened surfaces and air bleeds 37 參考文獻 from the wall on apical side, ASME J. Heat Transfer 130 (2008) 061702-1-061702-13. [12] S.W. Chang, A. W. Lees, T.-M. Liou, G.F. Hong, Heat transfer of a radially rotating furrowed channel with two opposite skewed sinusoidal wavy walls, Int. J. Thermal Science,(SCI),Vol.49,769-785,2010. NSC 96-2221-E-022-015MY3. [13] M., Huh, Y.-H., Liu, J.-C., Han, Effect of rib height on heat transfer in a two pass rectangular channel (AR=1:4) with a sharp entrance at high rotation numbers, Int. J. Heat Mass Transfer 52 (2009) 4635-4649. [14] F.T., Willett, A.E. Bergles, A. E., Heat transfer in rotating narrow rectangular pin-fin ducts, Experimental Thermal and Fluid Science 25 (2002) 573-582. [15] T.S., Griffith, L., AI-Hadhrami L., J.C., Han, J-C, Heat transfer in rotating rectangular cooling channels (AR=4) with dimples, ASME J. Turbomachinery 125 (2003) 555-563. [16] S.W. Chang, T.L. Yang, T.-M., Liou, G.F. Hong, ,Heat transfer in rotating scale-roughened trapezoidal duct at high rotation numbers, J. Applied Thermal Engineering 29 (2009) 1682-1693. [17] S.W., Chang, T.-M., Liou, T.L., Yang, G.F., Hong, Heat transfer in radially rotating pin-fin channel at high rotation numbers, ASME J. Turbomachinery 131 (2009) In press. [18] G., Cardone, T., Astarita, G.M., Carlomagno, Wall heat transfer in static and rotating 1800 turn channels by quantitative infrared thermography, Rev. Cén. Therm. 37 (1998) 644-652. [19] K.M. Kim, Y.Y. Kim, D.H. Lee, D.H. Rhee, H.H. Cho, Influence of duct aspect ratio on heat/mass transfer in coolant passages with rotation, Int. J. Heat Fluid Flow 28 (2007) 357-373. [20] P.M. Ligrani, G.I. Mahmood, J.L. Harrison, C.M. Clayton, D.L. Nelson, Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls, Int. J. Heat Mass Transfer 44 (2001) 4413-4425. [21] G.I. Mahmood, P.M. Ligrani, Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure, Int. J. Heat Mass Transfer 45 (2002) 2011-2020. [22] S.W. Chang, K.F. Chiang, T.L. Yang, C.C. Huang, Heat transfer and pressure drop in dimpled fin channels, Int. J. Exp. Thermal Fluid Science 33 (2008) 23-40. [23] Editorial Board of ASME Journal of Heat Transfer, Journal of heat transfer policy on reporting uncertainties in experimental measurements and results, 38 參考文獻 ASME Journal of Heat Transfer 115 (1993) 5-6. [24] B. Avisar, L. Shemer, A. Kribus, Measurements of velocity fields in finite cylinder arrays with and without tip clearance, Int. J. Experimental Thermal Fluid Science 24 (2001) 157-167. [25] S.Y. Won, G.I. Mahmood, P.M. Ligrain, Spatially-resolved heat transfer and flow structure in a rectangular channel with pin fins, Int. J. Heat Mass Transfer 47 (2004) 1731-1743. [26] S.W. Chang, T.L. Yang, C.C. Huang, K.F. Chiang, Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array, Int. J. Heat Mass Transfer 51 (2008) 5247-5259. [27] R. Kristoffersen, H.I. Anderson, Direct simulation of low-Reynolds number turbulent flow in a rotating channel, J. Fluid Mech. 235 (1993) 163-197. [28] U. Piomelli, J.H. Liu, Large-eddy simulation of rotating channel flows using a localized dynamic model, Phys. Fluids 7 (1995) 839-848. [29] A.K. Sleiti, J.S. Kapat, Effects of Coriolis and centrifugal forces on turbulence and transport at high rotation and density ratios in a rib-roughened channel, Int. J. Thermal Sciences 47 (2008) 609-619. [30] W.D., Morris, Heat Transfer and Fluid Flow in Rotating Coolant Channels , John Wiley &Sons Ltd, (1981) ISBN 0471101214. [31] Chang, S.W., Yang, T.L., and Wang, W.J., Heat Transfer in a Rotating Twin-Pass Trapezoidal-Sectioned Passage Roughened by Skewed on Ribs Two Opposite Walls, Journal of Heat Transfer Engineering, Vol. 27, No. 10, 63-79, 2006.
|