跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳緯駿
研究生(外文):Chen, Wei-Chun
論文名稱:矩形通道兩相對壁面設置半球狀突起物於 高旋轉數之熱傳特性實驗研究
論文名稱(外文):Heat Transfer of Rotating Rectangular-Channel With Two Opposite Walls Roughened by Hemi-spherical Protrusions at High Rotation Numbers
指導教授:張始偉張始偉引用關係
指導教授(外文):Chang, Shyy-Woei
口試委員:蘇樂梅嚴祖煦張始偉
口試日期:2011/06/17
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:輪機工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:51
中文關鍵詞:旋轉管道高旋轉數渦輪機轉子葉片冷卻
外文關鍵詞:Spherical ProtrusionRotating ChannelHigh Rotating NumberTurbine Rotor Blade Cooling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
本實驗研究使用紅外線熱像儀,量測旋轉矩形管道中,兩相對壁面
設置半球狀击起裝置(hemispherical protrusion)時之詳細熱傳係數分佈。旋
轉實驗測詴之最高旋轉數(rotation number,Ro)為0.6。藉由分析、比較靜
止及旋轉狀態量測之詳細熱傳係數分佈面,探討雷諾數(Re)、旋轉數(Ro)
及浮力數(Bu)對設置半球狀击起物,於兩相對壁面局部及表面平均Nusselt
number(Nu and Nu)所產生之影響。比較靜止及旋轉狀態所得之熱傳係數
分佈面,及由各測詴條件計算所得之Nu 顯示,科氏力和旋轉浮力對於旋
轉矩形測詴管道迎風面(leading wall)及背風面(trailing wall)之熱傳性能具有
顯著之影響。依據旋轉管道迎風面及背風面全展流域表面平均Nu 數所進
行之參數分析,推導出Nu之實驗公式,藉以評估雷諾數(Re)、旋轉數(Ro)
及浮力數(Bu)對Nu所產生之偶合及單獨影響,提供應用半球狀击起裝置作
為提升燃氣渦輪動葉內冷卻系統熱傳性能之設計參考。
關鍵字:球狀击起表面,旋轉管道,高旋轉數,渦輪機轉子葉片冷卻
Detailed heat transfer distributions over two opposite leading and trailing walls
roughened by spherical protrusions were measured from a rotating rectangular
channel at rotation number up to 0.6 to examine the effects of Reynolds (Re),
rotation (Ro) and buoyancy (Bu) numbers on local and area averaged Nusselt
numbers (Nu and Nu ) using the infrared thermography. A set of selected heat
transfer data illustrates the Coriolis and rotating-buoyancy effects on the
detailed Nu distributions and the area-averaged heat transfer performances over
the leading and trailing walls of the rotating channel. Area-averaged Nu for
the developed flow region over the leading and trailing enhanced walls are
parametrically analyzed to devise a set of empirical heat transfer correlations
that permits the evaluation of the interdependent and individual effects of Re,
Ro and Bu on Nu .
Keywords: Spherical Protrusion, Rotating Channel, High Rotating Number,
Turbine Rotor Blade Cooling.
* This abstract is collected from S.W., Chang, T.-M., Liou, W.-C., Chen, Influence of radial
rotation on heat transfer in a rectangular channel with two opposite walls roughened by
hemispherical protrusions at high rotation number , ASME J. Turbomachinery 134 (2012)
中文摘要…..……………………………………..…………………….....I
英文摘要…..………………………………………..……………...….....II
符號…….……………………………………………..…….....…...…....III
第一章 前言……………………………………………………………...1
1-1 研究背景與動機………………...……………………………1
1-2 文獻回顧……………………………………………………...2
1-3 研究內容與論文架構…………………………………….…..3
第二章 實驗方法………………………………………………………...5
2-1 旋轉實驗設備及熱傳詴驗模組………………………………5
2-2 實驗規劃與數據處理…………………………………………9
第三章 結果與討論………………………………………………….... 14
3-1 靜態管道熱傳性能…………………………………………..14
3-2 旋轉管道熱傳性能…………………………………………..18
3-3 參數分析……………………………………………………..25
第四章 結論…………………………………………………………. 32
參考文獻………………………………………………………………..34
[1] M.E.,Taslim, L.A., Bondi, D.M., Kercher, An experimental investigation of heat transfer in an orthogonally rotating channel roughened with 45 deg criss-cross ribs on two opposite walls, ASME Journal of Turbomachinery 113 (1991) 346-353.
[2] J.H., Wagner, B.V., Johnson, B.A., Graziani, F.C., Yeh, Heat transfer in rotating serpentine passages with trips normal to the flow, ASME Journal of Turbomachinery 114 (1992) 847-857.
[3] B.V., Johnson, J.H., Wagner, G.D., Steuber, G. D., F.C., Yeh, Heat transfer in rotating serpentine passages with trip skewed to the flow, ASME J. Turbomachinery 116 (1994) 113-123.
[4] J.A., Parson, J.C., Han, Y.M., Zhang, Effects of model orientation and wall heating condition on local heat transfer in a rotating two-pass square channel with rib turbulators, Int. J. Heat Mass Transfer 38 (1995) 1151-1159.
[5] S., Dutta, J.C., Han, C.P., Lee, Local heat transfer in a rotating two-pass ribbed triangular duct with two model orientations, Int. J. Heat Mass Transfer 39 (1996) 707-715.
[6] H., Iacovides, D.C., Jackson, G., Kelemenis, B.E., Launder, Y.-M. Yuan, Flow and heat transfer in a rotating U-bend with 450 ribs, Int. J. Heat Fluid Flow 22 (2001) 308-314.
[7] T.-M., Liou, M.-Y., Chen, Y.-M. Wang, Heat transfer, fluid flow, and pressure measurements inside a rotating two-pass duct with detached 90-deg ribs”, ASME J. Turbomachinery 125 (2003) 565-574.
[8] S.W., Chang, W.D., Morris, Heat transfer in a radially square duct fitted with in-line transverse ribs, Int. J. Thermal Sciences 42 (2003) 267-282.
[9] A., Murata, S., Mochizuki, Aiding and opposing contributions of centrifugal buoyancy on turbulent heat transfer in a two-pass transverse- or angled-rib-roughened channel with sharp 1800 turns, Int. J. Heat Mass Transfer 47 (2004) 3721-3743.
[10] S.W., Chang, S.W, T.-M., Liou, W.-H., Yeh, J.-H., Hung, J-H, Heat transfer in a radially rotating square-sectioned duct with two opposite walls roughened by 45 degree staggered ribs at high rotation numbers, ASME J. Heat Transfer, 129 (2007) 188-199.
[11] S.W. Chang, T.-M. Liou, S.F. Chiou, S.F., Chang, Heat transfer in high-speed rotating trapezoidal duct with rib-roughened surfaces and air bleeds
37
參考文獻
from the wall on apical side, ASME J. Heat Transfer 130 (2008) 061702-1-061702-13.
[12] S.W. Chang, A. W. Lees, T.-M. Liou, G.F. Hong, Heat transfer of a radially rotating furrowed channel with two opposite skewed sinusoidal wavy walls, Int. J. Thermal Science,(SCI),Vol.49,769-785,2010. NSC 96-2221-E-022-015MY3.
[13] M., Huh, Y.-H., Liu, J.-C., Han, Effect of rib height on heat transfer in a two pass rectangular channel (AR=1:4) with a sharp entrance at high rotation numbers, Int. J. Heat Mass Transfer 52 (2009) 4635-4649.
[14] F.T., Willett, A.E. Bergles, A. E., Heat transfer in rotating narrow rectangular pin-fin ducts, Experimental Thermal and Fluid Science 25 (2002) 573-582.
[15] T.S., Griffith, L., AI-Hadhrami L., J.C., Han, J-C, Heat transfer in rotating rectangular cooling channels (AR=4) with dimples, ASME J. Turbomachinery 125 (2003) 555-563.
[16] S.W. Chang, T.L. Yang, T.-M., Liou, G.F. Hong, ,Heat transfer in rotating scale-roughened trapezoidal duct at high rotation numbers, J. Applied Thermal Engineering 29 (2009) 1682-1693.
[17] S.W., Chang, T.-M., Liou, T.L., Yang, G.F., Hong, Heat transfer in radially rotating pin-fin channel at high rotation numbers, ASME J. Turbomachinery 131 (2009) In press.
[18] G., Cardone, T., Astarita, G.M., Carlomagno, Wall heat transfer in static and rotating 1800 turn channels by quantitative infrared thermography, Rev. Cén. Therm. 37 (1998) 644-652.
[19] K.M. Kim, Y.Y. Kim, D.H. Lee, D.H. Rhee, H.H. Cho, Influence of duct aspect ratio on heat/mass transfer in coolant passages with rotation, Int. J. Heat Fluid Flow 28 (2007) 357-373.
[20] P.M. Ligrani, G.I. Mahmood, J.L. Harrison, C.M. Clayton, D.L. Nelson, Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls, Int. J. Heat Mass Transfer 44 (2001) 4413-4425.
[21] G.I. Mahmood, P.M. Ligrani, Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure, Int. J. Heat Mass Transfer 45 (2002) 2011-2020.
[22] S.W. Chang, K.F. Chiang, T.L. Yang, C.C. Huang, Heat transfer and pressure drop in dimpled fin channels, Int. J. Exp. Thermal Fluid Science 33 (2008) 23-40.
[23] Editorial Board of ASME Journal of Heat Transfer, Journal of heat transfer policy on reporting uncertainties in experimental measurements and results,
38
參考文獻
ASME Journal of Heat Transfer 115 (1993) 5-6.
[24] B. Avisar, L. Shemer, A. Kribus, Measurements of velocity fields in finite cylinder arrays with and without tip clearance, Int. J. Experimental Thermal Fluid Science 24 (2001) 157-167.
[25] S.Y. Won, G.I. Mahmood, P.M. Ligrain, Spatially-resolved heat transfer and flow structure in a rectangular channel with pin fins, Int. J. Heat Mass Transfer 47 (2004) 1731-1743.
[26] S.W. Chang, T.L. Yang, C.C. Huang, K.F. Chiang, Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array, Int. J. Heat Mass Transfer 51 (2008) 5247-5259.
[27] R. Kristoffersen, H.I. Anderson, Direct simulation of low-Reynolds number turbulent flow in a rotating channel, J. Fluid Mech. 235 (1993) 163-197.
[28] U. Piomelli, J.H. Liu, Large-eddy simulation of rotating channel flows using a localized dynamic model, Phys. Fluids 7 (1995) 839-848.
[29] A.K. Sleiti, J.S. Kapat, Effects of Coriolis and centrifugal forces on turbulence and transport at high rotation and density ratios in a rib-roughened channel, Int. J. Thermal Sciences 47 (2008) 609-619.
[30] W.D., Morris, Heat Transfer and Fluid Flow in Rotating Coolant Channels , John Wiley &Sons Ltd, (1981) ISBN 0471101214.
[31] Chang, S.W., Yang, T.L., and Wang, W.J., Heat Transfer in a Rotating Twin-Pass Trapezoidal-Sectioned Passage Roughened by Skewed on Ribs Two Opposite Walls, Journal of Heat Transfer Engineering, Vol. 27, No. 10, 63-79, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top