跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳承修
研究生(外文):Chan-Shou Wu
論文名稱:利用奈米粒子與元件外部結構的改變來提升氮化銦鎵/氮化鎵發光二極體之發光效率
論文名稱(外文):Improved Light Extraction Performance with Self-Assembly Metal Nano-Cluster and Gear-Shaped for InGaN/GaN Light Emitting Diode
指導教授:梁財春梁財春引用關係
指導教授(外文):Tsair-Chun Liang
學位類別:博士
校院名稱:國立高雄第一科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:128
中文關鍵詞:奈米粒子發光二極體金屬有機化學氣相沉積微型週期性結構側向出光透明導電薄膜
外文關鍵詞:Micro-Periodic StructureLight from SidewallNano-ClusterMetal Organic Chemical Vapor DepositionLEDTransparent Conductive Oxide Thin Film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
在本論文中,我們首先探討在不同的製程條件下對氧化銦錫(ITO)、鎳/金(Ni/Au)與鎳/氧化銦錫(Ni/ITO)等透明導電薄膜的光電特性,以及應用在氮化鎵(GaN)系列發光二極體(LED)元件上的影響。經由實驗的結果顯示,當ITO經由氧氣(O2)退火後,得到的電阻率為3.12x10-4 Ω-㎝,在460nm其薄膜穿透率約為93.5%,跟Ni/Au與Ni/ITO薄膜相比提升了32%與11%。而在元件實際量測的結果顯示,ITO、Ni/Au與Ni/ITO等透明導電薄膜應用在LED上,在20mA時,其LED順向偏壓分別為3.57 V、 3.41 V與3.32 V,而輸出功率分別為5.1 mW、4.3mW與3.4mW。
之後在實驗中,我們使用奈米金屬鎳(Ni)團簇與奈米金屬銀(Ag)團簇,來作為LED元件表面週期性結構所需要的蝕刻擋層,因此在本實驗結果中得知,當金屬鎳薄膜厚度為5 nm而快速熱退火(RTA)的溫度是900 ℃時,可以形成密度較高與尺寸均勻的奈米鎳團簇,分別為2.2 X 109 cm-2 與 150-230 nm,而金屬銀薄膜在厚度5 nm,RTA溫度為500 ℃時,可以有較佳的奈米銀團簇之密度與尺寸,分別為6.5 X 10-10 cm-2 與 45-85 nm。蝕刻完成後,我們把表面有週期性結構的GaN做成元件。實驗的結果顯示,使用奈米銀團簇來作為LED表面週期性結構的擋層,可以有較佳的輸出光功率為8.2 mW,比起使用奈米鎳團簇做週期性結構的LED與一般的LED分別提升了21%與71%。之後我們也將奈米銀團簇應用在ITO的上面,實驗的結果發現隨著溫度的變化,輸出光功率也會有所改變,當金屬銀厚度5 nm,RTA溫度在500 ℃時,有比較好的輸出光功率為5.6 mW,比起一般的LED大約提升了10%左右。
另外,在本實驗中嘗試改變LED元件的外觀來提升輸出光功率,我們利用外觀為三角形的LED元件比傳統LED的元件(正方形)有較高的輸出光功率的原理,結合在圓形LED元件的側邊來做改善,經由實驗的結果可以發現,鋸齒型外觀的LED元件輸出光功率為7.9 mW,比起使用三角形外觀與正方形外觀的LED元件相對提升了約34%與73%。
In this dissertation, firstly we discussed the photoelectric characteristics of transparent conductive films of ITO, Ni/Au, and Ni/ITO under different process conditions, and its impact whereas applying to LED component of GaN series. The experimental results showed that after annealing treatment with O2, the obtained resistivity of ITO was 3.12x10-4 Ω-㎝, and film transmitting rate was about 93.5% at 460nm, which was enhancement of 32% and 11% compared to Ni/Au and Ni/ITO film, respectively. While the results of practical measurement showed that applying transparent conductive films of ITO, Ni/Au and Ni/ITO on LED, obtained forward voltages of 3.57 V, 3.41 V and 3.32 V, and output power of 5.1 mW, 4.3mW and 3.4mW respectively at 20mA.
Then during the experiment, we applied nano metal Ni cluster and Ag cluster for etching barrier, which required for periodical structure, on LED component surface. Therefore, the preliminary experimental results, when metal Ni film thickness was 5nm and RTA temperature at 900℃, higher density and even shaped nano Ni cluster could be formed, as 2.2 X 109 cm-2 and 150-230 nm , respectively, when metal Ag film thickness was 5nm and RTA temperature at 500℃, higher density and even shaped nano Ag cluster could be formed, as 6.5 X 10-10 cm-2 and 45-85 nm, respectively. After etching completed, we processed GaN with periodical structured surface into a component. The experimental results showed that with nano Ag cluster as LED surface periodical structured barrier, a better output power of 8.2 mW could be obtained, compared to adopting nano Ni cluster as periodical structured LED and ordinary LED enhanced 21% and 71%, respectively. Then, applied nano Ag cluster on ITO, after etching, the experimental results showed that along with the fluctuation of temperature. The output power changed accordingly, when the thickness of metal Ag was 5nm and RTA temperature at 500℃, a better output power of 5.4 mW could be obtained, which was an enhancement of 13% comparing to ordinary LED.
In addition, during the experiment, we tried to enhance output power by changing the appearance of LED component, by adopting theoretical advantage of higher output power of triangular shaped LED component over ordinary LED (rectangular), combined with round shaped LED side for improvement, the experimental results showed that Circular-Gear shaped LED component output power was 7.9 mW, comparing to triangular and rectangular shaped LED component, there were 34% and 73% enhancement respectively.
List of Contents
Chinese Abstract I
English Abstract III
Acknowledgments VI
List of Contents VIII
List of Tables XI
List of Figures XII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Introduction of Metal Organic Chemical Vapor Deposition Technology 4
1.3 Application of Diffusion Current Layer 6
1.4 Organization of the Thesis 8

Chapter 2 GaN Based Light Emitting Diodes with Different Transparent Layer 9
2.1 Introduction 9
2.2 The Property of Electronic and Optical of ITO, Ni/Au and Ni/ITO Transparent Layer with Different Manufacture Parameters 10
2.2.1 ITO Thin Film 10
2.2.1.1 Thickness 200nm, Aerating O2 and Temperature
Changed 10
2.2.1.2 Thickness 200nm, Aerating O2 and Holding Time Changed 12
2.2.1.3 Thickness 300nm, Aerating O2 and Temperature Changed
14
2.2.1.4 Thickness 300nm, Aerating O2 and Holding Time Changed 16
2.2.1.5 Film Thickness 200nm and 300nm, Aerating O2 and Comparison 18
2.2.1.6 Aerating N2 and Temperature Changed 19
2.2.1.7 Aerating N2 Holding Time Changed 20
2.2.1.8 Aerating Air and Temperature Changed 22
2.2.1.9 Aerating Air, Altering Holding Time 24
2.2.2 Ni/Au Thin Film 26
2.2.3 Ni/ITO Thin Film 29
2.3 Fabrication of InGaN/GaN LEDs with ITO, Ni/Au and Ni/ITO Transparent Layers 30
2.4 Summary 33

Chapter 3 Using Nano-Process Technique of Self-Assembly Ni and Ag Nano -Masks to Improve The Light Output Power of InGaN/GaN LEDs 35
3.1 Introduction 35
3.2 Varying the Manufacture Parameter Influence the Nano Ni Clusters 37
3.3 Varying the Manufacture Parameter Influence the Nano Ag Clusters 49
3.4 Effect of the GaN Nano-Road with Different Etching Time and Mask 59
3.5 Device Fabrication 71
3.6 Summary 78
Chapter 4 Output Power Enhancement of GaN-Base Light Emitting Diodes by Using Circular-Gear Structure 79
4-1 Introduction 79
4.2 Experiments 80
4.2.1 Basic Theory 80
4.2.2 InGaN/GaN MQW LED Manufacture 84
4.3 Results and Discussion 86
4.4 Conclusions 89

Chapter 5 Conclusion and Future work 90
5.1 Conclusion 90
5.2 Future work 92
Rferences 94



List of Tables
Table 2-1 Film Thickness 200nm and 300nm, Aerating O2 and Comparison 18
Table 2-2 Aerating Various Gas, Electrical and Optical Properties of ITO Film 26
Table 3-1 The Density of Ni Nano-Cluster Varied The Ni Thin Films with at Different Temperature 49
Table 3-2 The Density of Ag Nano-Cluster Varied The Ag Thin Films with at Different Temperature 59














List of Figures
Fig. 1-1 Roadmap of LED Application in Lighting 1
Fig. 1-2 Energy Bandgap versus lattice constant for wurtzite III-nitride and zinc-blende III-phosphide semiconductor alloy systems 3
Fig. 1-3 The Path of Diffusion Current Was in the Conventional LED 7
Fig. 2-1 Electrical Properties of the ITO thin Films as a Function of the Different Temperature 11
Fig. 2-2 Optical Transmission Spectra of ITO with 200 nm Annealed at Different Temperature 12
Fig. 2-3 Electrical Properties of The ITO Thin Films as A Function of The Holding Time Changed 13
Fig. 2-4 Optical Transmission Spectra of ITO with 200 nm and Holding Time Changed 14
Fig. 2-5 Electrical Properties of the ITO Thin Films as a Function of the Different Temperature 15
Fig. 2-6 Optical Transmission Spectra of ITO with 300 nm Annealed at Different Temperature 16
Fig. 2-7 Electrical Properties of the ITO Thin Films as a Function of the Holding Time Changed 17
Fig. 2-8 Optical Transmission Spectra of ITO with 300 nm and Holding Time Changed 18
Fig. 2-9 Electrical Properties of the ITO thin Films as a Function of the Different Temperature 19
Fig. 2-10 Optical Transmission Spectra of ITO with 200 nm Annealed at Different Temperature 20
Fig. 2-11 Electrical Properties of the ITO thin Films as a Function of the Holding Time Changed 21
Fig. 2-12 Optical Transmission Spectra of ITO with 200 nm and Holding Time Changed 22
Fig. 2-13 Electrical Properties of the ITO Thin Films as a Function of the Different Temperature 23
Fig. 2-14 Optical Transmission Spectra of ITO with 200 nm Annealed at Different Temperature 24
Fig. 2-15 Electrical Properties of the ITO Thin Films as a Function of the Holding Time Changed 25
Fig. 2-16 Optical Transmission Spectra of ITO with 200 nm and Holding Time Changed 25
Fig. 2-17 Electrical Properties of the Ni/Au Thin Films as a Function of the Different Temperature 27
Fig. 2-18 Optical Transmission Spectra of Ni/Au with 3nm/7nm Annealed at Different Temperature 28
Fig. 2-19 Electrical Properties of the Ni/ITO Thin Films as a Function of the Different Temperature 29
Fig. 2-20 Optical transmission spectra of Ni/ITO with 3nm/7nm annealed at different temperature 30
Fig. 2-21 Measured Forward Voltage as Functions of Injection Current of Nitride-Based LEDs with Ni/Au (LED I), Ni/ITO (LED II) and ITO (LED III) p-Contacts 32
Fig. 2-22 L-I Characteristics of Nitride-Based LEDs with Ni/Au (LED I), Ni/ITO (LED II) and ITO (LED III) p-Contacts 33
Fig. 3-1 SEM Image of the Ni Thin Film was 5 nm and Annealed at 700 ℃ 38
Fig. 3-2 SEM Image of the Ni Thin Film was 5 nm and Annealed at 800 ℃ 38
Fig. 3-3 SEM Image of the Ni Thin Film was 5 nm and Annealed at 850 ℃ 39
Fig. 3-4 SEM Image of the Ni Thin Film was 5 nm and Annealed at 900 ℃ 39
Fig. 3-5 SEM Image of the Ni Thin Film was 5 nm and Annealed at 950 ℃ 40
Fig. 3-6 SEM Image of the Ni Thin Film was 5 nm and Annealed at 1000 ℃ 40
Fig. 3-7 SEM Image of the Ni Thin Film was 3 nm and Annealed at 800 ℃ 41
Fig. 3-8 SEM Image of the Ni Thin Film was 3 nm and Annealed at 850 ℃ 41
Fig. 3-9 SEM Image of the Ni Thin Film was 3 nm and Annealed at 900 ℃ 42
Fig. 3-10 SEM Image of the Ni Thin Film was 3 nm and Annealed at 950 ℃ 42
Fig. 3-11 SEM Image of the Ni Thin Film was 3 nm and Annealed at 1000 ℃ 43
Fig. 3-12 SEM Image of the Ni Thin Film was 7 nm and Annealed at 850 ℃ 43
Fig. 3-13 SEM Image of the Ni Thin Film was 7 nm and Annealed at 950 ℃…….…..44
Fig. 3-14 SEM Image of the Ni Thin Film was 10 nm and Annealed at 800 ℃ 44
Fig. 3-15 SEM Image of the Ni Thin Film was 10 nm and Annealed at 850 ℃ 45
Fig. 3-16 SEM Image of the Ni Thin Film was 10 nm and Annealed at 900 ℃ 45
Fig. 3-17 SEM Image of the Ni Thin Film was 10 nm and Annealed at 950 ℃…….....46
Fig. 3-18 SEM Image of the Ni Thin Film was 10 nm and Annealed at 1000 ℃ 46
Fig. 3-19 SEM Image of the Ni Thin Film was 15 nm and Annealed at 800 ℃ 47
Fig. 3-20 SEM Image of the Ni Thin Film was 15 nm and Annealed at 900 ℃ 47
Fig. 3-21 SEM Image of the Ni Thin Film was 15 nm and Annealed at 1000 ℃ 48
Fig. 3-22 SEM Image of the Ag Thin Film was 5 nm and Annealed at 300 ℃ 50
Fig. 3-23 SEM Image of the Ag Thin Film was 5 nm and Annealed at 400 ℃ 51
Fig. 3-24 SEM Image of the Ag Thin Film was 5 nm and Annealed at 500 ℃ 51
Fig. 3-25 SEM Image of the Ag Thin Film was 5 nm and Annealed at 600 ℃ 52
Fig. 3-26 SEM Image of the Ag Thin Film was 3 nm and Annealed at 300 ℃ 52
Fig. 3-27 SEM Image of the Ag Thin Film was 3 nm and Annealed at 400 ℃ 53
Fig. 3-28 SEM Image of the Ag Thin Film was 3 nm and Annealed at 500 ℃ 53
Fig. 3-29 SEM Image of the Ag Thin Film was 3 nm and Annealed at 600 ℃ 54
Fig. 3-30 SEM Image of the Ag Thin Film was 7 nm and Annealed at 300 ℃ 54
Fig. 3-31 SEM Image of the Ag Thin Film was 7 nm and Annealed at 400 ℃ 55
Fig. 3-32 SEM Image of the Ag Thin Film was 7 nm and Annealed at 500 ℃ 55
Fig. 3-33 SEM Image of the Ag Thin Film was 7 nm and Annealed at 600 ℃ 56
Fig. 3-34 SEM Image of the Ag Thin Film was 10 nm and Annealed at 300 ℃ 56
Fig. 3-35 SEM Image of the Ag Thin Film was 10 nm and Annealed at 400 ℃ 57
Fig. 3-36 SEM Image of the Ag Thin Film was 10 nm and Annealed at 500 ℃ 57
Fig. 3-37 SEM Image of the Ag Thin Film was 10 nm and Annealed at 600 ℃ 58
Fig. 3-38 SEM Image of Top-View of GaN Nano-Road with Ni-Nano Mask on SiO2 for Etching 1 min. (a)10000X (b)70000X 61
Fig. 3-39 SEM Image of Rotated 20° of GaN Nano-Road with Ni-Nano Mask on SiO2 for Etching 1 min. (a)10000X (b)70000X 61
Fig. 3-40 SEM Image of Top-View of GaN Nano-Road with Ni-Nano Mask on SiO2 for Etching 3 min. (a)10000X (b)70000X 62
Fig. 3-41 SEM Image of Rotated 20° of GaN Nano-Road with Ni-Nano Mask on SiO2 for Etching 3 min. (a)10000X (b)70000X 63
Fig. 3-42 SEM Image of Top-View of GaN Nano-Road with Ni-Nano Mask on SiO2 for Etching 5 min. (a)10000X (b)25000X 64
Fig. 3-43 SEM Image of Rotated 20° of GaN Nano-Road with Ni-Nano Mask on SiO2 for Etching 5 min. (a)10000X (b)35000X 64
Fig. 3-44 SEM Image of Top-View of GaN Nano-Road with Ag-Nano Mask on SiO2 for Etching 1 min. (a)50000X (b)70000X 65
Fig. 3-45 SEM Image of Rotated 20° of GaN Nano-Road with Ag-Nano Mask on SiO2 for Etching 1 min. (a)10000X (b)70000X 66
Fig. 3-46 SEM Image of Top-View of GaN Nano-Road with Ag-Nano Mask on SiO2 for Etching 3 min. (a)30000X (b)70000X 67
Fig. 3-47 SEM Image of Rotated 20° of GaN Nano-Road with Ag-Nano Mask on SiO2 for Etching 3 min. (a)30000X (b)100000X 67
Fig. 3-48 SEM Image of Top-View of GaN Nano-Road with Ni-Nano Mask for Etching 3 min. (a)10000X (b)70000X 68
Fig. 3-49 SEM Image of Rotated 20° of GaN Nano-Road with Ni-Nano Mask for Etching 3 min. (a)10000X (b)70000X 69
Fig. 3-50 SEM Image of Top-View of GaN Nano-Road with Ag-Nano Mask for Etching 3 min. (a)10000X (b)70000X 70
Fig. 3-51 SEM Image of Rotated 20° of GaN Nano-Road with Ag-Nano Mask for Etching 3 min. (a)10000X (b)35000X 70
Fig. 3-52 Measured Forward Voltage as Functions of Injection Current of Nitride-Based LEDs with Non-Metal Mask (LED I), Nano-Ni Metal Mask (LED II) and Nano-Ag Metal Mask (LED III) 72
Fig. 3-53 L-I Characteristics of Nitride-Based LEDs with Non-Metal Mask (LED I), Nano-Ni Metal Mask (LED II) and Nano-Ag Metal Mask (LED III)..…….73
Fig. 3-54 SEM Image of the Ag Thin Film was 5 nm on ITO Layer and Annealed at 400℃ 74
Fig. 3-55 SEM Image of the Ag Thin Film was 5 nm on ITO Layer and Annealed at 500℃ 74
Fig. 3-56 SEM Image of the Ag Thin Film was 5 nm on ITO Layer and Annealed at 600℃ 75
Fig. 3-57 (a) SEM Image of Top-View of ITO Nano-Road with Ag-Nano Mask for Etching 1 min.(70000X) (b) SEM Image of Rotated 20° of ITO Nano-Road with Ag-Nano Mask. (100000X) 76
Fig. 3-58 L-I Characteristics of Conventional LED and with Nano-Ag Metal Mask on ITO LED 77
Fig. 3-59 Measured Forward Voltage as Functions of Injection Current of Conventional LED and with Nano-Ag Metal Mask on ITO LED 77
Fig. 4-1 The Light Paths Inside the (a) QDA-LED (b) TRA-LED (c) CCG-LED 83
Fig. 4-2 Schematic Diagrams of the (a) QDA-LED (b) TRA-LED (c) CCG-LED and (d) The Cross-View of Periodic Textured ITO on The CCG-LED..……….…..85
Fig. 4-3 Current-Voltage Characteristic (I-V) of the REC-LED, TRI-LED, and CCG-LED 86
Fig. 4-4 Light Output Power Characteristics (L-I) of the REC-LED, TRI-LED, and CCG-LED 87
Fig. 4-5 Room-Temperature L-I-V Characteristics of the Fabricated LEDs: CCS-LED and Periodic-Textured CCS-LED 88
1. M. Koike, N. Shibata, H. Kato, and Y. Takahashi, 2002, “Development of High Efficiency GaN-Based Multiquantum-Well Light-Emitting Diodes and Their Applications,” IEEE Journal On Selected Topics In Quantum Electronics, Vol.8, pp. 271-277, April.
2. Y. L. Li,_ Y. R. Huang, and Y. H. Lai, 2007, “Efficiency Droop Behaviors Of InGaN/GaN Multiple-Quantum-Well Light-Emitting Diodes With Varying Quantum Well Thickness,” Appl. Phys. Lett., Vol.91, pp. 181113-181116, October.
3. A. B. Sebitosi, and P. Pillay, 2007, “New Technologies for Rural Lighting in Developing Countries: White LEDs,” IEEE Transactions On Energy Conversion, Vol. 22, pp. 674-679, September.
4. C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, and Y. C. Lin, 2002, “Nitride-Based Cascade Near White Light-Emitting Diodes,” IEEE Photonics Technology Letters, Vol. 14, pp. 908-910, July.
5. G. Franssen, T. Suski, P. Perlin, R. Bohdan, A. Bercha, W. Trzeciakowski, I. Makarowa, R. Czernecki, M. Leszczyński, and I. Grzegory, 2006, “Screening of Polarization Induced Electric Fields In Blue/Violet InGaN/GaN Laser Diodes By Si Doping In Quantum Barriers Revealed By Hydrostatic Pressure,” Phys. Stat. Sol. (c), Vol.3, pp. 2303-2306, May.
6. C. C. Pan, C. M. Lee, W. J. Hsu, G. T. Chen, and J. I. Chyi, 2003, “Luminescence
Efficiency of InGaN-Based Multiple Quantum Well UV-LEDS,” IEEE CLEO/Pacific Rim, Taipei, Taiwan, R.O.C., pp. 69, March
7. 史光國,2005,半導體發光二極體及固體照明,全華圖書股份有限公司,台北。
8. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, 1986, “Metalorganic Vapor
Phase Epitaxial Growth Of A High Quality GaN Film Using An AlN Buffer Layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, December.
9. M. G. Craford, N. Holonyak, Jr., and F. A. Kish, Jr., 2001, “In pursuit of the ultimate lamp,” Scientific Amer., pp. 83-88, February.
10. J. Brodrick, 2007, “Next-Generation Lighting Initiative at the U.S. Department of Energy: Catalyzing Science into the Marketplace,” IEEE Journal of Display Technology, Vol.3, pp. 91-97, June.
11. H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, 1989, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),” Jpn. J. Appl. Phys., Vol. 28, pp. L2112-L2114, November.
12. S. T. Sheppard, K. Doverspike, W. L. pribbles, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, 1999, “High-power microwave GaN/AlGaN HEMTs on Semi-Insulating Silicon Carbide Substrates,” IEEE Electron Device Lett., Vol. 20, pp. 161-163, Apri.
13. S. Nakamura, T. Mukai, and M. Senoh, 1994, “Candela‐Class High‐Brightness InGaN/AlGaN Double‐Heterostructure Blue‐Light‐Emitting Diodes,” Appl. Phys. Lett, Vol.64, pp. 1687-1689, January.
14. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, 2007, “Status and Future of High- Power Light-Emitting Diodes for Solid-State Lighting,” IEEE Journal of Display Technology, Vol.3, pp. 160-175, June.
15. H. Sugawara, M. Ishikawa, and G. Hatakoshi, 1991, “High-Efficiency In- GaAlP/GaAs Visible Light-Emitting Diodes,” Appl. Phys. Lett., Vol. 58, pp. 1010-1012, December.
16. S. Strite, M. E. Lin and H. Morkoc., 1993, “Progress and Prospects for GaN and the III–V Nitride Semiconductors,” Thin Solid Films, Vol.231, pp. 197-210, August.
17. K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, and A. S. H. Liao, 1992, “Twofold Efficiency Improvement In High Performance AlGaInP Light-Emitting Diodes In The 555–620 nm Spectral Region Using A Thick GaP Window Layer,” Appl. Phys. Lett., Vol. 61, pp. 10451047, June.
18. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, 1994, “Very High-Efficiency Semiconductor Wafer-Bonded Transparent-Substrate (AlxGa1-x)0.5In0.5 P/GaP Light-Emitting Diodes,” Appl. Phys. Lett., Vol. 64, pp. 2839-2841, March.
19. M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan,P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins., 1999, “High-Power Truncated-Inverted-Pyramid (AlxGa1-x)0.5In0.5P/GaP Light-Emitting Diodes Exhibiting >50% External Quantum Efficiency,” Appl. Phys. Lett., Vol.75, pp. 2365-2367, August.
20. T. Gessmann and E. F. Schubert, 2004, “High-Efficiency AlGaInP Light-Emitting Diodes For Solid-State Lighting Applications,” Journal of Appl. Phys., Vol. 95, pp. 2203-2216, December.
21. Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee., 2005, “Increasing the Extraction Efficiency of AlGaInP LEDs Via n-Side Surface Roughening,” IEEE Photonic Technology Letter, Vol. 17, pp. 2289-2291, November.
22. H. P. Maruska and J. J. Tietjen, 1969, “The Preparation and Properties of Vapor‐Deposited Single‐Crystal‐Line GaN,” Appl. Phys. Lett. Vol.15, pp. 327-329, August.
23. Y. J. Lee, H. C. Tseng, H. C. Kuo, S. C. Wang, C. W. Chang, T. C. Hsu, Y. L. Yang, M. H. Hsieh, M. J. Jou, and B. J. Lee, 2005, “Improvement in Light-Output Efficiency of AlGaInP LEDs Fabricated on Stripe Patterned Epitaxy,” IEEE Photonic Technology Letter, Vol. 17, pp. 2532-2534, December.
24. Y. J. Lee, T.C. Lu, H.C. Kuo, S.C. Wang, M. J. Liou, C.W. Chang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, 2006, “AlGaInP LEDs with Stripe Patterned Omni-Directional Reflector,” Japanese Journal of Applied Physics, Vol. 45, pp. 643-645, February.
25. Y. J. Lee, T.C. Lu, H.C. Kuo, S.C. Wang, M. J. Liou, C.W. Chang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, 2006, “High Brightness AlGaInP-Based Light Emitting Diodes by Adopting the Stripe-Patterned Omni-Directional Reflector,” Semiconductor. Sci. Technol. Vol.21, pp. 184-185, January.
26. An-Ting Cheng, 1998, Structural Development of GaN-Based Materials and Light Emitting Diodes Grown by Metalorganic Vapor Phase Epitaxy Technique, National Cheng Kung University, Doctor of Philosophy.
27. Yi-Chao Lin, 1995, Efficiency of GaN based Light Emitting Diode Improved by Chip Process Technique and the Growth of GaN Based Light Emitting Diode on Si Substrate, National Cheng Kung University, Doctor of Philosophy.
28. H. M. Manasevit, 1968, “Single-Crystal Gallium Arsenide on Insulating Substrates,” Appl. Phys. Lett., Vol.12, pp.156-159, January.
29. S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner and H. C. Lee, 1986, “Homogeneous and Heterogeneous Thermal Decomposition Rates of Trimethylgallium and Arsine and Their Relevance to the Growth of GaAs by MOCVD,” J. Cryst. Growth. Vol.77, pp. 188-193, September.
30. B.Gil, 1998, Group III Nitride Semiconductor Compounds Physics and Applications, pp.70 and pp.73, Berlin, Germany: Oxford University Press.
31. H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, 2000, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett. Vol.77, pp. 1903-1904, July.
32. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, 1995, “High-Brightness InGaN Blue, Green and Yellow Light Emitting-Diodes with Quantum Well Structures,” Jpn. J. Appl. Phys., Vol.34, pp.L797-L799, July.
33. S. Nakamura, T. Mokia, and M. Senoh, 1994, “Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light Emitting Diodes,” Appl. Phys. Lett. Vol.64, pp. 1687-1689, March.
34. C.C. Yu, C.F. Chu, J.Y. Tsai, H.W. Huang, T.H. Hsueh, C.F. Lin, and S.C. Wang, 2002, “Gallium Nitride Nanorods Fabricated by Inductively Coupled Plasma Reactive Ion Etching,” Jpn. J. Appl. Phys., Vol.41, pp. L910-L912, August.
35. C.H. Kuo, S.J. Chang, Y.K. Su, J.F. Chen, L.W. Wu, J.K. Sheu, C.H. Chen, and G.C. Chi, 2002,“InGaN/GaN Light Emitting Diodes Activated in O2 Ambient,” IEEE Electron. Dev. Lett. Vol.23, pp. 240-242, May.
36. C.H. Kuo, S.J. Chang, Y.K. Su, L.W. Wu, J.K. Sheu, C.H. Chen, and G.C. Chi, 2002, “Low Temperature Activation of Mg-Doped GaN in O2 Ambient,” Jpn. J. Appl. Phys. Lett. Vol.41, pp. L112-L114, February.
37. C.H. Chen, S.J. Chang, Y.K. Su, J.K. Sheu, J.F. Chen, C.H. Kuo, and Y.C. Lin, 2002, “Nitride-Based Cascade Near White Light-Emitting Diodes,” IEEE Photo. Technol. Lett. Vol.14. pp. 908-910, July.
38. T.C. Wen, S.J. Chang, L.W. Wu, Y.K. Su, W.C. Lai, C.H. Kuo, C.H. Chen, J.K. Sheu, and J.F. Chen, 2002, “InGaN/GaN Tunnel-Injection Blue Light-Emitting Diodes,” IEEE Trans. Electron. Dev., Vol.49, pp. 1093-1095, June.
39. J.K. Ho, C.S. Jong, C.C. Chiu, C.N. Huang, K.K. Shih, L.C. Chen, F.R. Chen, and J.J. Kai, 1999, “Low-Resistance Ohmic Contacts to p-type GaN Achieved by the Oxidation of Ni/Au Films,” J. Appl Phys, Vol.86, pp. 4491-4497, October.
40. J.K. Ho, C.S. Jong, C.C. Chiu, C.N. Huang, C.Y. Chen and K.K. Shih, 1999, “Low-Resistance Ohmic Contacts to p-type GaN,” Appl Phys Lett, Vol.74, pp. 1275-1277, March.
41. R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, 2001, “Low-Resistance and High- Transparency Ni/ Indium Tin Oxide Ohmic Contacts to p-type GaN,” Appl. Phys. Lett., Vol.79, pp. 2925-2927, October.
42. T. Furusaki, J. Takahashi and K. Kodaira, 1994, “Preparation of ITO Thin Films by Sol-Gel Method,” J. Ceram. Soc. Jpn., Vol.102, pp. 200-205, November.
43. D. M. Mattox, 1991, “Sol-Gel Derived, Air-Baked Indium and Tin Oxide Films,” Thin Solid Films, Vol.204, pp. 25-32, April.
44. J. Kane and H. P. Schweizer, 1975, “Chemical Vapor Deposition of Transparent Electrically Conducting Layers of Indium Oxide Doped with Tin,” Thin Solid Films, Vol.29, pp. 155-163, February.
45. J. A. Dobrowolski, F. C. Ho, D. Menagh, R. Simpson, and A. Waldorf, 1987, “Transparent, Conducting Indium Tin Oxide Films Formed on Low or Medium Temperature Substrates by Ion-Assisted Deposition,” Appl. Opt., Vol.26, pp. 5204-5210, December.
46. J.C Manifacier, J.P Fillard and J.M Bind, 1981, “Deposition of In2O3-SnO2 Layers on Glass Substrate Using a Spraying Method,” Thin Solid Films, Vol.77, pp. 67-80, March.
47. J. Machet, J. Guille, P. Saulnier, and S. RobertT, 1981, “Deposition of Conducting and Transparent Thin Films of Indium Tin Oxide by Reactive Ion Plating,” Thin Solid Films, Vol.80, pp. 149-155, June.
48. J. L. Yao, S. Hao and J. S. Wilkinson, 1990, “Indium Tin Oxide Films by Sequential Evaporation,” Thin Solid Films, Vol.189, pp. 227-233, August.
49. M. R. Krames, O. B. Shchekin, M. M. Regina, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, 2007, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol., Vol.3, pp. 160-175, June.
50. E. F. Schubert, 2006, Light-Emitting Diodes, Cambridge University Press, Cambridge.
51. S. Nakamura and G. Fasol, 1997, The Blue Laser Diode: GaN Based Light Emitters and Lasers, pp. 216, Springer, Berlin.
52. Wang L, Zhang X P, Xi G Y, Zhao W, Li H T, Jiang Y, Han Y J and Luo Y, 2008, Acta Phys. Sin., Vol.57, pp. 5923-5927, September.(in Chinese)
53. E. F. Schubert, 2003, Light-Emitting Diodes, pp. 277–319, Cambridge University Press, Cambridge.
54. M. Boroditsky and E. Yablonovitch, 1997, “Light-Emitting Diode Extraction Efficiency,” Proc. SPIE, Vol.3002, pp. 119-122, February.
55. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, 1993, “30% External Quantum Efficiency from Surface Textured, Thin‐Film Light‐Emitting Diodes,” Appl. Phys. Lett., Vol.63, pp. 2174-2176, August.
56. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, 2004, “Increase in the Extraction Efficiency of GaN-Based Light-Emitting Diodes Via Surface Roughening,” Appl. Phys. Lett., Vol.84, pp. 855-857, December.
57. T. H. Hsueh, J. K. Sheu, H. W. Huang, J. Y. Chu, C. C. Kao, H. C. Kua, and S. C. Wang, 2005, “Enhancement in Light Output of InGaN-Based Microhole Array Light-Emitting Diodes,” IEEE Photonics Technol. Lett. Vol.17, pp. 1163-1165, June.
58. S.Y. Kwon, H. J. Kim, H. Na, Y. W. Kim, H. C. Seo, H. J. Kim, Y. Shin, and E. Yoone, 2006, “In-rich InGaN/GaN Quantum Wells Grown by Metal-Organic Chemical Vapor Deposition,” Journal of Applied Physics, Vol.99, pp.044906-044910, February.
59. H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, G. Wang, 2008, “Improvement of the Performance of GaN-Based LEDs Grown on Sapphire Substrates Patterned by Wet and ICP Etching,” Solid-State Electronics, Vol.52, pp. 962-967, February.
60. H. K. Kim, H. G. Kim, H. Y. Kim, J. H. Ryu, J. h. Kang, N. Han, P. Uthirakumar and C. H. Hong, 2010, “Enhanced Light Output Power of GaN-Based Light Emitting Diodes with Overcut Sideholes Formed by Wet Etching,” Solid-State Electronics, Vol.54, pp. 575-578, January.
61. X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, 2010, “Surface Plasmon-Enhanced Light Emission Using Silver Nanoparticles Embedded in ZnO,” Applied Physics Letter, Vol.97, pp.071909-071911, August.
62. H. W. Huang, H. C. Kuo, C. F. Lai, C. E. Lee, C. W. Chiu, T. C. Lu, S. C. Wang, C. H. Lin, and K. M. Leung, 2007, “High-Performance GaN-Based Vertical-Injection Light-Emitting Diodes With TiO2–SiO 2 Omnidirectional Reflector and n-GaN Roughness,” IEEE Photonics Technology Letters, Vol. 19, pp. 565-567, April.
63. S. Tripathy, V. K. X. Lin, S. L. Teo, A. Dadgar, A. Diez, J. Blasing, and A. Krost,
2007, “InGaN/GaN Light Emitting Diodes on Nanoscale Silicon on Insulator,” Applied Physics Letters, Vol.91, pp. 231109-231111, December.
64. C. C. Kao, H. C. Kuo, K. F. Yeh, J. T. Chu, W. L. Peng, H.W. Huang, T. C. Lu, and S. C. Wang, 2007, “Light–Output Enhancement of Nano-Roughened GaN Laser Lift-Off Light-Emitting Diodes Formed by ICP Dry Etching,” IEEE Photonics Technology Letters, Vol. 19, pp. 849-851, June.
65. Hung-Wen Huang, Jhi-Kai Huang, Shou-Yi Kuo, Kang-Yuan Lee, and Hao-Chung Kuo, 2010, “High Extraction Efficiency GaN-Based Light-Emitting Diodes on Embedded SiO2 Nanorod Array and Nanoscale Patterned Sapphire Substrate,” Applied Physics Letters, Vol.96, pp. 263115-263117, July.
66. C. S. Wu, T. C. Liang , H. Kuan1, and W. C. Cheng, 2011, “Output Power Enhancement of GaN-Based Light-Emitting Diodes Using Circular-Gear Structure,” Jpn. J. Appl. Phys., Vol.50, pp. 032101-032103, March.
67. W. Han, S. Fan, Q. Li and Y. Hu, 1997, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science, Vol.277, pp. 1287-1289, August.
68. G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, L. Li, C.M. Mo and Y.Q. Mao, 1999, “Large-Scale Synthesis of Single Crystalline Gallium Nitride Nanowires,” Appl. Phys. Lett., Vol.75, pp. 2455-2457, August.
69. C.C. Tang, S.S. Fan, M.L. de la Chapelle and P. Li, 2001, “Silica-Assisted Catalytic Growth of Oxide and Nitride Nanowires,” Chem. Phys. Lett. Vol.333, pp. 12-15, January.
70. X. Duan and C. Lieber, 2000, “Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires,” J. Am. Chem. Soc., Vol.122, pp. 188-189, December.
71. H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee and S. T. Lee, 2000, “Bulk-Quantity GaN Nanowires Synthesized from Hot Filament Chemical Vapor Deposition,” Chem. Phys. Lett., Vol.327, pp. 263-270, September.
72. W.Q. Han and A. Zettl, 2002, “Pyrolysis Approach to the Synthesis of Gallium Nitride Nanorods,” Appl. Phys. Lett. Vol.80, pp. 303-305, October.
73. C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen, and S. M. Chen, 2004, “Improved Light-Output Power of GaN LEDs by Selective Region Activation,” IEEE Photonics Technol. Lett. Vol.16, pp. 1444-1446, June.
74. S. J. Kim, J. Y. Shim, J. H. Lee, H. S. Yoon, K. H. Lee, D. J. Kim, and J. H. Lee, 2003, “DC and RF Performance Characterization of a 0.2μm T-Gate GaN/AlGaN Heterostructure Field-Effect Transistors with n+-AlGaN Cap Layers,” J. Korean Phys. Soc. Vol.42, pp. 276-280, February.
75. Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, 2006, “High Light-Extraction GaN-Based Vertical LEDs With Double Diffuse Surfaces,” IEEE J. Quantum Electron., Vol.42, pp. 1196-1201, December.
76. Z. H. Feng, Y. D. Qi, Z. D. Lu, and K. M. Lau, 2004,“GaN-Based Blue Light-Emitting Diodes Grown and Fabricated on Patterned Sapphire Substrates by Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth., Vol.272, pp. 327-332, October.
77. W. Satoshi, Y. Norihide, N. Masakazu, U. Yusuke, S. Chiharu, Y. Yoichi, T.
Tsunemasa, T. Kazuyuki, O. Hiroaki, and K. Hiromitsu, 2003, “Internal Quantum Efficiency of Highly-Efficient InxGa1-xN-Based Near-Ultraviolet Light-Emitting Diodes,” Appl. Phys. Lett., Vol.83, pp. 4906-4908, December.
78. T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Suh, H. K. Cho, and B. H. Kong, 2007, “Enhanced Light Output from Aligned Micropit InGaN-Based Light Emitting Diodes Using Wet-Etch Sapphire Patterning,” Appl. Phys. Lett., Vol.90, pp. 131107-131109, March.
79. T. Mukai and S. Nakamura, 1999, “Ultraviolet InGaN and GaN Single-Quantum -Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates,” Jpn. J. Appl. Phys., Vol.38, pp. 5735-5739, July.
80. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, 2001,“High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys., Vol.40, pp. L583-L585, June.
81. C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen, and S. M. Chen, 2004, “Improved Light-Output Power of GaN LEDs by Selective Region Activation,” IEEE Photonics Technol. Lett., Vol.16, pp. 1444-1446, June.
82. R. H. Horng, D. S. Wuu, Y. C. Lein, and W. H. Lan, 2001, “Low-Resistance and High-Transparency Ni/Indium Tin Oxide Ohmic Contacts to p-type GaN,” Appl. Phys. Lett., Vol.79, pp. 2925-2927, October.
83. C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, 2003, “Improved Light-Output and Electrical Performance of InGaN-Based Light-Emitting Diode by Microroughening of the p-GaN Surface,” J. Appl. Phys., Vol.93, pp. 9383-9385, June.
84. L. B. Chang, Y. H. Chang, and M. J. Jeng, 2007, “Light Output Improvement of InGaN-Based Light-Emitting Diodes by Microchannel Structure,” IEEE Photonics Technol. Lett., Vol.19, pp. 1175-1177, August.
85. M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, 1999, “High-Power Truncated-Inverted-Pyramid (AlxGa1-x)0.5In0.5P/GaP Light-Emitting Diodes Exhibiting >50% External Quantum Efficiency,” Appl. Phys. Lett., Vol.75, pp. 2365-2367, October.
86. C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, 2005, “High-Speed Modulation of InGaAs : Sb–GaAs–GaAsP Quantum-Well Vertical-Cavity Surface-Emitting Lasers With 1.27μm Emission Wavelength,” IEEE Photonics Technol. Lett., Vol.17, pp. 528-530, March.
87. J. S. Lee, J. Lee, S. Kim, and H. Jeon, 2006, “GaN-Based Light-Emitting Diode Structure With Monolithically Integrated Sidewall Deflectors for Enhanced Surface Emission,” IEEE Photonics. Technol. Lett., Vol.18, pp. 1588-1590, August.
88. J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, 2007, “Enhanced Light Extraction from Triangular GaN-Based Light-Emitting Diodes,” IEEE Photonics Technol. Lett., Vol.19, pp. 1865-1867, December.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top