(3.238.186.43) 您好!臺灣時間:2021/02/25 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃煜成
研究生(外文):Yu-Cheng Huang
論文名稱:廚餘、豆渣及蔬菜廢棄物混和堆肥化
論文名稱(外文):Co-composting of kitchen, soy and vegetable wastes
指導教授:張一岑
指導教授(外文):James I.C. Chang
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:132
中文關鍵詞:經驗模式反應曲面法多變量迴歸實驗設計
外文關鍵詞:Response surface methodMultivariate regression analysisMixture experimental designEmpirical models
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:329
  • 收藏至我的研究室書目清單書目收藏:0
台灣每年產生75萬噸廚餘、58萬公噸豆渣與70萬噸蔬菜廢棄物,約佔總垃圾量38%。然而,除了10%食品廢棄物有效再利用外,其餘多未回收利用。若能將三種廢棄物以堆肥方式處理,不僅可以將廢棄物減量,也可產生有機肥料,作為土壤改良劑。
本研究利用合成廚餘、豆渣及蔬菜等廢棄物依實驗設計法所規劃出的比例與稻殼(副資材)混和後,放入實驗室規模堆肥槽(180公升)中進行實驗,以取得數據;接著再應用多變量迴歸分析發展出經驗公式,並藉由反應曲面法顯示各指標相關性及趨勢變化。
實驗結果顯示,所有混和堆肥程序皆可在11天內分解完畢。蔬菜廢棄物中水份高達90%以上,必須混以廚餘或豆渣,以提升其有機質含量,否則效果不佳。添加豆渣不僅可加速堆肥速率,且可改善其它主要堆肥腐熟指標。本研究所建立的經驗公式可作為食品廢棄物及蔬菜廢棄物混和堆肥化程序之參考。
Each year, Taiwan generates 750,000 tons of kitchen waste, 580,000 tons of soy residue and 700,000 tons of vegetable waste. Most of those wastes are either sent to incinerators or to landfills. Since all three types of wastes contain abundant organic matters, it is desired to convert them into useable compost by co-composting them together.
This work is to study the feasibility of co-composting all three wastes. The wastes were first mixed based on the mixing ratios determined by the mixture experimental design method, and then were mixed with the bulking agent (rice husks) before they were co-compost in a 180-liter laboratory composter. The multivariate regression analysis method was used to develop empirical models of important results such as composting time, final pH values, highest temperatures, C/N ratios, etc.
Experimental results showed that all waste mixtures could be co-composted in 11 days. Soy residue was a good feedstock for composting due to its higher nitrogen content. The higher the soy residue content in a mixture was, the faster the composting process proceed. Vegetable waste performed poorly during composting due to its high moisture content. Co-composting with kitchen waste or soy residue was definitely needed to improve the performance. The quadratic equations and the response surfaces developed in the work can be used as the guidance for future studies in the remediation of co-composting of kitchen, soy and vegetable wastes.
目 錄
摘 要 ................................................................................................................................ I
ABSTRACT ..................................................................................................................... II
誌 謝 ............................................................................................................................... IV
目 錄 ............................................................................................................................... IV
第一章 緒論 .................................................................................................................... 1
1-1 研究緣起 ........................................................................................................... 1
1-2 研究目的 ........................................................................................................... 2
第二章 文獻回顧 ............................................................................................................ 3
2-1 食品廢棄物(廚餘) ............................................................................................. 3
2-1-1 基本特性 ................................................................................................ 3
2-2-2 處理概況 ................................................................................................ 6
2-2 蔬菜廢棄物 ....................................................................................................... 9
2-2-1 產量分析 ................................................................................................ 9
2-2-2 蔬菜之組成成份及性質 ...................................................................... 11
2-3 豆類食品 ......................................................................................................... 14
2-3-1 黃豆營養價值及產量 .......................................................................... 14
2-3-2 豆渣性質及產量 .................................................................................. 16
2-4 堆肥生物降解反應概述 ................................................................................. 18
2-4-1 堆肥速率之操作參數與指標 ............................................................... 20
2-4-2 腐熟度判定指標 .................................................................................. 24
2-5 食品及蔬菜廢棄物的堆肥研究 ..................................................................... 25
第三章 實驗設計、材料與方法 .................................................................................. 27
3-1 實驗設備 ......................................................................................................... 27
3-2 實驗材料 ......................................................................................................... 31
3-3 實驗流程 ......................................................................................................... 35
3-4 實驗方法 ......................................................................................................... 36
3-4-1 混合物實驗設計法 .............................................................................. 36
3-4-2 實驗操作條件 ...................................................................................... 39
3-5 分析項目與方法 ............................................................................................. 40
第四章 結果與討論 ...................................................................................................... 43
4-1 廚餘與高麗菜進行堆肥之比例調配與變化過程 ......................................... 44
4-1-1 堆肥程序中反應溫度、CO2 釋放率及pH 值變化 ............................. 44
4-1-2 堆肥程序中三成份變化 ...................................................................... 54
4-1-3 堆肥程序中水溶性成份變化 .............................................................. 55
4-1-4 元素分析結果 ...................................................................................... 58
4-2 高麗菜與豆渣進行堆肥之比例調配與變化過程 ......................................... 59
4-2-1 堆肥程序中反應溫度、CO2 釋放率及pH 值變化 ............................. 60
4-2-2 堆肥程序中三成份變化 ...................................................................... 66
4-2-3 堆肥程序中水溶性成份變化 .............................................................. 67
4-2-4 元素分析結果 ...................................................................................... 68
4-3 廚餘與豆渣進行堆肥之比例調配與變化過程 ............................................. 69
4-3-1 堆肥程序中反應溫度、CO2 釋放率及pH 值變化 ............................. 70
4-3-2 堆肥程序中三成份變化 ...................................................................... 73
4-3-3 堆肥程序中水溶性成份變化 .............................................................. 74
4-3-4 元素分析結果 ...................................................................................... 76
4-4 廚餘、高麗菜與豆渣進行堆肥之比例調配與變化過程 ............................. 76
4-4-1 堆肥程序中反應溫度、CO2 釋放率及pH 值變化 ............................. 77
4-4-2 堆肥程序中三成份變化 ...................................................................... 90
4-4-3 堆肥程序中水溶性成份變化 .............................................................. 91
4-4-4 元素分析結果 ...................................................................................... 94
4-5 腐熟度之比較 ................................................................................................. 95
4-5-1 種子發芽試驗 ...................................................................................... 95
4-5-2 腐熟指標統整 ...................................................................................... 96
4-6 不同廢棄物比例與物理性質對堆肥過程的影響 ......................................... 98
4-7 統計分析 ....................................................................................................... 106
第五章 結論與建議 .................................................................................................... 108
5-1 結論 ............................................................................................................... 108
5-2 建議 ............................................................................................................... 109
參考文獻 ...................................................................................................................... 110
圖目錄
圖2-1 98 年垃圾可燃份組成 .......................................................................................... 3
圖2-2 近五年廚餘回收再利用量 .................................................................................. 8
圖 3-1 實驗設備圖 ....................................................................................................... 29
圖3-2 直立式攪拌反應槽 ............................................................................................ 30
圖3-3 CO2/O2 濃度分析儀 ....................................................................................... 30
圖3-5 實驗流程圖 ........................................................................................................ 35
圖3-6 各試程圖示 ........................................................................................................ 36
圖4-1 試程A 反應溫度及時間關係圖 ....................................................................... 45
圖4-2 試程A 二氧化碳釋放率與反應溫度關係圖 ................................................... 46
圖4-3 試程A 酸鹼度與反應時間關係圖 ................................................................... 47
圖4-4 試程E 反應溫度及時間關係圖 ........................................................................ 49
圖4-5 試程E 二氧化碳釋放率與反應溫度關係圖 .................................................... 49
圖4-6 試程E 酸鹼度與反應時間關係圖 ..................................................................... 50
圖4-7 試程B 反應溫度、pH 值與時間關係圖 .......................................................... 52
圖4-8 試程B 二氧化碳釋放率與反應溫度關係圖 ..................................................... 52
圖4-9 試程A、E、B 水溶性TOC 變化 ..................................................................... 56
圖4-10 試程A、E、B 水溶性TKN 變化 .................................................................... 56
圖4-11 試程C 反應溫度及時間關係圖 ...................................................................... 60
圖4-12 試程C 二氧化碳釋放率與反應溫度關係圖 .................................................. 61
圖4-13 試程C 酸鹼度與反應時間關係圖 .................................................................. 62
圖4-14 試程F 反應溫度、pH 值與時間關係圖 ......................................................... 63
圖4-15 試程F 二氧化碳釋放率與反應溫度關係圖 .................................................. 64
圖4-16 試程C、F 水溶性TOC 及TKN 變化 ............................................................... 67
圖4-17 試程D 反應溫度、pH 值與時間關係圖 ........................................................ 70
圖4-18 試程D 二氧化碳釋放率與反應溫度關係圖 .................................................. 71
圖4-19 試程D 水溶性TOC 及TKN 變化 .................................................................... 74
圖4-20 試程G 反應溫度、pH 值與時間關係圖 ........................................................ 78
圖4-21 試程G 二氧化碳釋放率與反應溫度關係圖 .................................................. 78
圖4-22 試程H 反應溫度、pH 值與時間關係圖 ........................................................ 80
圖4-23 試程H 二氧化碳釋放率與反應溫度關係圖 .................................................. 80
圖4-24 試程I 反應溫度、pH 值與時間關係圖 ......................................................... 82
圖4-25 試程I 二氧化碳釋放率與反應溫度關係圖 ................................................... 82
圖4-26 試程J 反應溫度、pH 值與時間關係圖 ......................................................... 84
圖4-27 試程J 二氧化碳釋放率與反應溫度關係圖 ................................................... 84
圖4-28 試程K 反應溫度、pH 值與時間關係圖 ........................................................ 86
圖4-29 試程K 二氧化碳釋放率與反應溫度關係圖 .................................................. 86
圖4-30 試程L 反應溫度、pH 值與時間關係圖 ........................................................ 88
圖4-31 試程L 二氧化碳釋放率與反應溫度關係圖 .................................................. 88
圖4-32 試程G、H、I、J、K、L 水溶性TOC 變化 .................................................. 92
圖4-33 試程G、H、I、J、K、L 水溶性TKN 變化 .................................................. 92
圖4-34 各試程系統原始架構圖 .................................................................................. 99
圖4-35 各試程廢棄物比例與堆肥時間關係圖 ........................................................ 100
圖4-36 各試程廢棄物比例與最高溫度關係圖 ........................................................ 101
圖4-37 各試程廢棄物比例與最終pH 值關係圖 ...................................................... 102
圖4-38 各試程廢棄物比例與碳損失率關係圖 ........................................................ 103
圖4-39 各試程廢棄物比例與最終水溶性碳氮比關係圖 ........................................ 104
圖4-40 各試程廢棄物比例與最終固相碳氮比關係圖 ............................................ 105
表目錄
表2-1 近五年之廚餘回收量 .......................................................................................... 4
表2-2 不同來源廚餘之營養成份 .................................................................................. 5
表2-3 廚餘基本性質分析 .............................................................................................. 5
表2-4 各年度執行成果 .................................................................................................. 7
表2-5 廚餘回收再利用處理 .......................................................................................... 8
表2-6 近年蔬菜種植面積及年產量 ............................................................................ 10
表2-7 蔬菜化學成份分析 ............................................................................................ 11
表2-8 溪湖果菜市場蔬菜廢棄物之化學組成分析 .................................................... 12
表2-9 高麗菜化學成份分析結果 ................................................................................ 13
表2-10 全球四大黃豆產量國家(2009 年) .................................................................. 15
表2-11 豆渣物化性質 .................................................................................................. 16
表2-12 各國豆渣之產量 .............................................................................................. 17
表2-13 各種反應基值之通風量經驗數值 .................................................................. 21
表2-14 各種副資材之成分分析 .................................................................................. 22
表2-15 腐熟度判斷頻估參數 ...................................................................................... 24
表3-1 台灣糧食平衡表 ................................................................................................ 31
表3-2 合成廚餘之基本成分與配製比例 .................................................................... 32
表3-3 豆渣之基本性質 ................................................................................................ 33
表3-4 反應物料之基本組成 ........................................................................................ 34
表3-5 各試程調配比例 ................................................................................................ 37
表3-6 反應基質含量調配表 ........................................................................................ 38
表4-1 廚餘、高麗菜成份比例 .................................................................................... 44
表4-2 廚餘、高麗菜比例高低與時間、溫度及pH 值之關係 .................................. 53
表4-3 試程A、E、B 三成份變化 ............................................................................... 54
表4-4 試程A、E、B 水溶性成份變化 ....................................................................... 57
表4-5 三試程元素分析含量最初及最終值 ................................................................ 59
表4-6 高麗菜、豆渣成份比例 .................................................................................... 59
表4-7 高麗菜、豆渣比例高低與時間、溫度及pH 值之關係 .................................. 65
表4-8 試程C、F 三成份變化 ...................................................................................... 66
表4-9 試程C、F 水溶性成份變化 .............................................................................. 68
表4-10 三試程元素分析含量最初及最終值 .............................................................. 69
表4-11 廚餘、豆渣成份比例 ....................................................................................... 69
表4-12 廚餘、豆渣比例各半與時間、溫度及pH 值之關係 ................................... 72
表4-13 試程D 三成份變化 ......................................................................................... 73
表4-14 試程D 水溶性成份變化 ................................................................................. 75
表4-15 試程D 元素分析含量最初及最終值 ............................................................. 76
表4-16 廚餘、高麗菜及豆渣成份比例 ...................................................................... 76
表4-17 廚餘、高麗菜與豆渣比例高低與時間、溫度及pH 值之關係 .................... 89
表4-18 試程G、H、I、J、K、L 三成份變化 ............................................................. 90
表4-19 試程G、H、I、J、K、L 水溶性成份變化 ..................................................... 93
表4-20 六試程之元素分析含量最初及最終值 .......................................................... 94
表4-21 堆肥程序前後種子發芽指數 .......................................................................... 95
表4-22 各試程腐熟成度結果比較 .............................................................................. 97
表4-23 各現象堆肥現象同整 ...................................................................................... 98
表4-24 廢棄物比例與各堆肥現象迴歸公式及相關性 ............................................ 106
表4-25 廢棄物比例與各堆肥現象的最佳化條件 .................................................... 107
1. Agnew, J.M., Leonard, J.J.,(2003) The physical properties of compost, Compost
Sci.Util.11 (3), 238-264.
2. Ajay S. Kalamdhad., Yatish K. Singh., Muntjeer Ali., Meena Khwairakpam., A.A.
Kazmi.,(2009) Rotary drum composting of vegetable waste and tree leaves,
Bioresource Technology 100 (2009) 6442–6450.
3. Bach, P.D., Shoda, M., Kubota, H.,(1984) Rate of composting of dewatered sewage
sludge in continuously mixed isothermal reactor, Journal of Fermentation
Technology 62, 285±292.
4. Banjarata Jolanun, Sirintornthep Towprayoon.,(2009) Novel bulking agent from
clay residue for food waste composting, Bioresource Technology 101 (2010)
4484–4490.
5. Bijaya K. Adhikari., Suzelle Barrington., Jose Martinez., Susan King.,(2007)
Characterization of food waste and bulking agents for composting, Waste
Management 28 (2008) 795–804.
6. Bishop, P.L., Godfrey, C.,(1983) Nitrogen transformations during sludge
composting, Biocycle 24, 34±39.
7. E. Erhart, K. Burian.,(1997) Evaluating quality and suppressiveness of Austrian
biowaste composts, Compost Sci. Util. 5 (1997) 15–24.
8. E. Erhart, K. Burian.,(1997) Evaluating quality and suppressiveness of Austrian
biowaste composts, Compost Sci. Util. 5 (1997) 15–24.
9. Epstein, E.,(1997) The Science of Composting. A Technomic Publishing Company,1997.
10. Fang, M., Ma, K.K., Wong, J.W.C., Wong, M.H.,(1999) Composting of sewage
sludge and coal fly ash: nutrient transformations, Bioresour. Technol. 67, 19.
11. Guang-Ruei Ke., Chao-Ming Lai., Ya-Yin Liu., Shang-Shyng Yang.,(2009)
Inoculation of food waste with the thermo-tolerant lipolytic actinomycete
Thermoactinomyces vulgaris A31 and maturity evaluation of the compost,
Bioresource Technology 101 (2010) 7424–7431.
12. H. Dinel, M. Schnitzer, S. Dumintet., (1996) Compost maturity: chemical
characteristics of extractable lipids, Compost Sci. Util. 4 (1996) 16–25.
13. Huang, G.F., Wong,J.W.C., Wu, Q.T., Nagar, B.B.,(2004) Effect of C/N on
composting of pig manure with sawdust, Waste Manage. 24(8), 805-813.
14. Jae-Jung Lee., Ro-Dong Park., Yong-Woong Kim., Jae-Han Shim., Dong-Hyun
Chae., Yo-Sup Rim., Bo-Kyoon Sohn., Tae-Hwan Kim., Kil-Yong Kim.,(2003)
Effect of food waste compost on microbial population, soil enzyme activity and
lettuce growth, Bioresource Technology 93 (2004) 21–28.
15. Joung-Dae Kima, Joon-Seok Park, Byung-Hoon In, Daekeun Kim, Wan
Namkoong.,(2007) Evaluation of pilot-scale in-vessel composting for food waste
treatment, Journal of Hazardous Materials 154 (2008) 272–277.
16. Kato, K., Miura, N.,(2008) Effect of matured compost as a bulking and inoculating
agent on the microbial community and maturity of cattle manure compost,
Bioresour. Technol. 99 (9), 3372-3380.
17. Kumar, M., Ou, Y.L., Lin, J.G.,(2010) Co-composting of green waste and food
waste at low C/N ratio, Waste Manage, 30(4), 602-609.
18. M. Wadhwa., S. Kaushal., M.P.S. Bakshi.,(2005) Nutritive evaluation of vegetable
wastes as complete feed for goat bucks, Small Ruminant Research 64 (2006)
279–284.
19. M.A. Bustamante., C. Paredes., R. Moral., E. Agullo., M.D. Perez-Murcia., M.
Abad.,(2008) Composts from distillery wastes as peat substitutes for transplant
production, Resources, Conservation and Recycling 52 (2008) 792–799.
20. Mahimairaja, S., Bolan, N.S., Hedley, M.J., Macgregor, A.N.,(1994) Losses and
transformation of nitrogen during composting of poultry manure with di€erent
amendments: an incubation experiment, Bioresource Technology 47, 265±273.
21. Mathava Kumar., Yan-Liang Ou., Jih-Gaw Lin.,(2009) Co-composting of green
waste and food waste at low C/N ratio, Waste Management 30 (2010) 602–609.
22. Miyuki Chikae, Ryuzoh Ikeda, Kagan Kerman, Yasutaka Morita, Eiichi
Tamiya.,(2005) Estimation of maturity of compost from food wastes and agro-residues
by multiple regression analysis, Bioresource Technology 97 (2006) 1979–1985.
23. Mohee, R., Mudhoo, A.,(2005) Analysis of the physical properties of an in-vessel
composting matrix, Journal of Powder Technology 155, 92–99.
24. Morisaki, N., Phae, C.G., Nakasaki, K., Shoda, M.,(1989) Nitrogen transformation
during thermophilic composting, Journal of Fermentation and Bioengineering 67,
57±61.
25. Morisaki, N., Phae, C.G., Nakasaki, K., Shoda, M.,(1989) Nitrogen transformation
during thermophilic composting, Journal of Fermentation and Bioengineering 67,
57±61.
26. Olena Stabnikova., Jing-Yuan Wang., Hong Bo Ding., Joo-Hwa Tay.,(2004)Biotransformation of vegetable and fruit processing wastes into yeast biomass
enriched with selenium, Bioresource Technology 96 (2005) 747–751.
27. Poincelot, R. P.,(1985) The biochemistry and methodology of composting, Bull.
754. The Connecticut Agr. Expt. Station,New Haven, CT.
28. Rajae Abouelwafa., Soumia Amir., Salah Souabi., Peter Winterton., Victor Ndira.,
Jean-Claude Revel., Mohamed Hafidi.,(2008) The fulvic acid fraction as it changes
in the mature phase of vegetable oil-mill sludge and domestic waste composting,
Bioresource Technology 99 (2008) 6112–6118.
29. Schultz, K. L.,(1962) Continuous thermophilic composting, Appl. Microbiol.
10,108-122.
30. Somen, J. , Margetic, M., Valjavec, J., and Vuk, D.,(1994) Composting sludges
frommunicipal wastewater treatment plants from two slowenian towns, Journal of
Hazardous Materials., 37.
31. V. Banegas., J.L. Moreno., J.I. Moreno., C. Garca., G. Leon., T. Hernandez.,(2006)
Composting anaerobic and aerobic sewage sludges using two proportions of
sawdust, Waste Management 27 (2007) 1317–1327.
32. Vicky L.M. Vestal J. R. Atal. E. E.,(1985) Microbilal Activity in Composting,
Biocycle.26,3541.1985.
33. Wong J.W.C.,(2002) Co-compsting of soybean residues and leaves in Hong Kong,
Bioresource Technology, 2002, Page99-106.
34. Yang, S. S.,(1997) Preparation and characterization of compost, J. Biomass Energy
Soc., 16.
35. Yang, S. S.,(1997) Preparation of compost and evaluation its maturity. FFTC Extension Bulletin., 445.
36. Yuan-Song Wei., Yao-Bo Fan., Min-Jian Wang., Ju-Si Wang.,(2000) Composting
and compost application in China, Resources, Conservation and Recycling 30
(2000) 277–300.
37. Ze-Kun Lee., Shiue-Lin Li., Jian-Sheng Lin., Yu-Hsuan Wang., Pei-Chen Kuo.,
Sheng-Shung Cheng.,(2008) Effect of pH in fermentation of vegetable kitchen
wastes on hydrogen production under a thermophilic condition, i n t e r n a t i onal
journal o f hydrogen energy 33 (2008) 5234 – 5241.
38. Zhang, R., and Guangqing, Liu., et al.,(2007) Characterization of food waste as
feedstock for anaerobic digestion, Bioresource Technology 98 (2007) 929–935.
39. Zhu, N.,(2007) Effect of low initial ratio on aerobic composting of swine manure
with rice straw, Bioresour. Technol. 98(1), 9-13.
40. 行政院環境保護署,2010,環境公務統計年報,行政院環境保護署。
41. 陳得財,1993,餿水在肉豬飼養之應用,養豬業與環保研討會論文集,
台灣省畜產試驗所編印(台南),pp.96-101。
42. 行政院農委會,2009,農業統計年報,行政院農業委員會。
43. 蔡仁傑,2003,蔬菜廢棄物好氧性生物降解(堆肥化),國立高雄第一科
技大學環安所碩士論文。
44. 張一岑,1998,果菜市場廢棄物堆肥化處理示範計畫報告,高雄縣環保
局。
45. 張一岑、許宏德,1999,果菜市場廢棄物減量與資源化處理策略,第十
四屆廢棄物處理技術研討會論文集,P.39~44。
46. 徐仙達,2009,台中市果菜市場有機廢棄回收最佳化政策之AHP,朝陽
科技大學環境工程與管理系碩士論文。
47. 林達昌、黃汝賢、洪錫楨,1995,果菜市場廢棄物減量策略(第一年),行政
院農委會。
48. 陳暐楨,2006,豆渣堆肥過程中化學及微生物相變化,國立高雄第一科
技大學環安所碩士論文。
49. 王昭閔,2001,好氧式堆肥處理之菌相調查及嗜高溫菌之分類,國立中
興大學獸醫微生物學研究所碩士論文。
50. 商務部網站,2005,豆奶將是繼牛奶之後的又一個熱點,中華人民共和
國商務部。
51. 中國食品產業網,2006,21 世紀豆奶市場潛力具大,中國輕工業聯合會,
北京。
52. 官路,1990,下水污泥堆肥化操作因子之研究,國立中央大學土木工程
學研究所碩士論文。
53. 徐挺恩,2007,食品廢棄物成份變化對堆肥程序的影響,國立高雄第一
科技大學環安所碩士論文。
54. 鄭東益,1997,污泥資源化固態醱酵之研究,國立雲林科技大學環境與
安全工程技術研究所碩士論文。
55. 林財旺、張武莉,1993,堆肥腐熟度判定法與利用自產堆肥接種改善堆
肥生產效率之研究,八十二年畜牧污染防治試驗研究計畫成果報告彙
編,台灣省畜產試驗所編印,pp.137~142。
56. 歐彥良,2008,實驗室堆肥反應槽及戶外堆肥反應槽之食品廢棄物與綠色廢棄物混合堆肥,國立交通大學環境工程系所碩士論文。
57. 吳國雄,2003,食品廢棄物好氧生物降解(堆肥化),國立高雄第一科技
大學環安所碩士論文。
58. 行政院農業委員會農糧署,2005,農業統計刊物台灣糧食平衡表,行政
院農業委員會。
59. 行政院衛生署食品衛生處,2009,蔬菜及稻殼化學成分分析,行政院衛
生署。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔