(3.215.180.226) 您好!臺灣時間:2021/03/06 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王聲穎
研究生(外文):Sheng-Ying Wang
論文名稱:以 Aspergillus niger 進行污泥中重金屬生物溶出程序之研究
論文名稱(外文):Bioleaching of heavy metals from sewage sludge by Aspergillus niger
指導教授:陳勝一陳勝一引用關係
指導教授(外文):Shen-Yi Chen
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:104
中文關鍵詞:固體物濃度污泥蔗糖濃度重金屬Aspergillus niger生物溶出
外文關鍵詞:sewage sludgesolid concentrationAspergillus nigersucrose concentrationheavy metalsbioleaching
相關次數:
  • 被引用被引用:2
  • 點閱點閱:246
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
  由於含重金屬之污泥本身對於環境會造成衝擊,故需要將重金屬進行去除。其中可利用生物溶出之方式,將污泥中重金屬進行去除。生物溶出本身主要是利用微生物所產生之代謝性產物 (如有機酸),將污泥中之重金屬進行生物溶出作用,達到去除重金屬之效果。本研究採用之處理技術為異營性生物處理,由於污泥本身富含高濃度有機物,因此要觀察異營性微是否能夠利用污泥中之有機物,同時為了確保微生物能夠進行生物溶出,過程之中依然會額外添加有機碳源。
  本研究是以Aspergillus niger作為植種,該菌種主要以產生草酸、檸檬酸及葡萄糖酸之代謝產物進行生物溶出,並且已經廣泛應用在各種物質進行生物溶出,不過對於處理污泥之文獻並不多,此外相關文獻並未探討不同條件的最佳操作參數。故本研究將會以污泥固體物濃度以及蔗糖濃度作為變數,經由實驗設計尋找最佳操作參數,以利於後續相關之研究或是實際應用於商業化。
  於實驗過程中發現到, SS 及 VSS 於實驗期間皆有降解之情形,不過當固體物小於一定程度下會受到微生物生長導致降解率下降;pH 值在蔗糖濃度以及固體物濃度越高的情況下維持越低的值,不過隨著時間增加會有逐漸往上升之情況;而微生物於實驗期間以產生檸檬酸及葡萄糖酸為主,且生成之有機酸因為受到為生物利用或是與金屬結合消耗而下降。
  根據目前的研究結果發現到,隨著污泥固體物濃度降低、蔗糖濃度升高會導致溶出效率增加,並以錳跟鋅之溶出效率較好,於污泥固體物濃度 1 % 及蔗糖濃度 55 g/L 可達到 100 % 之溶出效率,至於其他金屬溶出率不佳之原因,是因為重金屬鍵結形態以有機物結合態以及殘存態存在。將數據收集完成建立反應曲面圖,得到錳的最佳操作條件在固體物濃度 1 % 及蔗糖濃度 70 g/L 下,溶出率可達到 75 %;鎳為固體物濃度 1% 及蔗糖濃度 100 g/L 下,溶出率可達到 54 %;鋅則是固體物濃度 1 %,蔗糖濃度 100 g/L 下可達 59 % 之溶出效率。其中鎳與鋅的模型具有一定的可靠度,不過僅限於實驗設計的參數範圍內。
  In future, because of the increasing population served by municipal sewer system, there are two typical and important problems are concerned: increasing volumes of waste sewage sludge and high concentrations of toxic substances in sludge. Utilization of sewage sludge in agriculture and land application has received significant attention in recent years because it conserves abundant nutrients and hydrocarbons that can be used as a soil fertilizer. However, the presence of elevated hazardous substances in sewage sludge will limit the land application of sewage sludge. In order to solve the above problems, it is important to develop the techniques for treatment of the large quantity of sewage sludge for reuse the sludge in land application or soil fertilizer.
  Bioleaching for metal detoxification of sludge, sediment and soil using chemolithoautrophic bacteria such as Thiobacillus sp. is a well-known process. It was observed that besides the well-know autotrophic bacteria also heterotrophic microorganisms play an important role in the bioleaching process. This biotechnology is environmentally sound and it may lower operational cost and energy requirement. However, bioleaching of heavy metals from sludge, sediment and soil by heterotrophic microorganisms has received little attention to date. The purposes of this study are to develop a metal bioleaching process by heterotrophic microorganisms to solubilize metals in the sludge, and to enhance the application feasibility of this biotechnology in the treatment and recycling of sludge in future. The results showed that the rate of pH reduction increased with increasing sludge solid content and sucrose concentration. In this study, the efficiency of solubilization of heavy metal decreases in the order: Mn > Zn > Ni> Pb> Cu > Cr. The efficiencies of metal leaching and solid degradation were found to decrease with an increase in sludge solid content and a decrease in sucrose. The maximum metal solubilization of Zn and Ni was obtained at 1% (w/v) sludge solid content and 100 g/L sucrose concentration, and the efficiency was higher than 54%. One the other hand, the maximum efficiency (75%) of Mn was found at 1% sludge solid content and 75 g/L sucrose concentration.
摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄     VIII
表目錄     IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 重金屬處理技術 3
2.1.1 物理化學處理技術 3
2.1.2 生物溶出技術 4
2.2 影響生物溶出因子 5
2.2.1 微生物特性 6
2.2.2 固體物特性 7
2.2.3 基質特性 8
2.2.4 物化參數 9
2.3 Aspergillus niger 代謝作用機制 10
2.4 各種使用 Aspergillus niger 溶出之方法 14
2.4.1 各階段溶出法 14
2.4.2 不同階段溶出法比較 15
2.5 有機酸與金屬錯合機制 16
2.6 污泥中重金屬鍵結型態 20
2.7 反應曲面法 22
2.7.1 反應曲面法設計 22
第三章 材料與方法 24
3.1 研究主要流程 24
3.2 污泥基本特性分析 25
3.3 純菌活化 26
3.4 馴養實驗 27
3.5 生物溶出實驗 28
3.6 生物溶出實驗條件設計 30
3.7 對照組 31
3.7.1 化學溶出實驗 31
3.7.2 不加植種之生物溶出實驗 31
3.7.3 無菌實驗 31
3.7.4 空白實驗 32
3.8 分析方法 33
3.8.1 標準方析方法 33
3.8.2 總有機碳 (TOC) 分析 33
3.8.3 有機酸分析 34
3.8.4 蛋白質分析 34
3.8.5 金屬五相萃取 35
第四章 結果與討論 36
4.1 污泥基本特性 36
4.2 馴養實驗 37
4.3 生物溶出實驗 38
4.3.1 SS、VSS變化 38
4.3.2 蛋白質之影響 42
4.3.3 pH 值變化 45
4.3.4 有機酸產量影響 48
4.4 金屬溶出效率 53
4.4.1 鉻之溶出效率 53
4.4.2 銅之溶出效率 53
4.4.3 鉛之溶出效率 55
4.4.4 鎳之溶出效率 58
4.4.5 鋅之溶出效率 60
4.4.6 錳之溶出效率 62
4.5 重金屬鍵結型態之變化 64
4.6 最佳化參數 67
4.6.1 中央合成設計 67
4.6.2 二階模型方程式之適合度檢定 68
4.7 對照實驗 74
4.7.1 化學溶出實驗 74
4.7.2 其他對照實驗 79
第五章 結論 85
5.1 結論 85
5.2 建議 86
參考文獻 87
Acharya, C., Kar, R. N., Sukla, L. B., and Misra, V. N. (2004). Fungal leaching of manganese ore. Transactions of The Indian Institute of Metals, 57, pp. 501-508.
Aung, K. M., and Ting, Y.-P. (2005). Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. Journal of Biotechnology. 116 , pp. 159-170.
Antonopoulou, G., Gavala, H. N., Skiadas, I. V., Angelopoulos, K., and Lyberatos, G. (2008). Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology, 99, pp. 110–119.
Anjum, F., Bhatti, H. N., and Ghauri, M. A. (2010a). Enhanced bioleaching of metals from black shale using ultrasonics. Hydrometallurgy. 100 , pp. 122-128.
Anjum, F., Bhatti, H. N., Asgher, M., and Shahid, M. (2010b). Leaching of metal ions from black shale by organic acids produced by Aspergillus niger. Applied Clay Science, 47, pp. 356-351.
Box, G. E., Hunter, W. G., and Hunter, J. S. (1978). Statistics for Experimenters, New York: John Wiley and Sons, pp. 510-539.
Brandl, H., Bosshard, R., and Wegmann, M. (2001). Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59 , pp. 319-326.
Babel, S., & Dacera, D. d. (2006). Heavy metal removal from contaminated sludge for land application: A review. Waste Management, 26, pp. 988–1004
Calmano, W., Hung, J., and Förstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science Technol, 28, pp. 223-235.
Chang, J. C. (1993). solubility product constants. In: CRC Handbook of Chemistry and Physics (D.R. Lide, ed.), pp. 39. CRC Press, Boca Raton.
Chlopecka, A., Bacon, J. R., Wilson, M. J., and Kay, J. (1996). Forms of cadmium, lead, and zinc in contaminated soils from southwest Poland. Journal of Environment Quality, 25, pp. 69-79.
Castro, I. M., Fietto, J. L. R., Vieira, R. X., Tropia, M. J. M., Campos, L. M. M., Paniage E. B. and Brandao, R. L. (2000). Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy, 57, pp. 39-49.
Chen, S. Y., Chiu, Y. C., Chang, P. L., and Lin, J. G. (2003). Assessment of recoverable forms of sulfur particles used in bioleaching of contaminated sediments. Water Research, 37, pp. 450-458.
Dutton, M. V., Evans, C. S., Atkey, P. T. and Wood, D. A. (1993). Oxalate production by basidiomycetes, including the white-rot species Coriolus versicolor an, Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 39, pp. 5-10.
Dacera, D. D., and Babel, S. (2008). Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes. Bioresource Technology, 99, pp. 1682-1689.
Dacera, D. D., Babel, S., and Parkpian, P. (2009). Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes. Journal of Hazardous Materials, 167, pp. 866-872.
Francis, A. J., Dodge, C. J. and Gillow, J. B. (1992). Biodegradation of metal citrate complexes and implications for toxic metal mobility. Nature, 356, pp. 140-142.
Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., et al. (2008). Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 160, pp. 655-661.
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41, pp. 47-92.
Gyliene, O., Aikaite, J., and Nivinskiene, O. (2004). Recycling of Ni (II)–citrate complexes using precipitation in alkaline solutions. Journal of Hazardous Materials, B109, pp. 105-111.
Keller, C., and Vedy, J. C. (1994). Distribution of copper and cadmium fractions in two forest soils. Journal of Environment Quality, 23, pp. 987-999.
Kim, I. S., Lee, J. U. and Jang, A. (2005) Bioleaching of heavy metals from dewatered sludge by Acidithiobacillus ferrooxidans. Journal of Chemical Technology and Biotechnology, 80, pp, 1339-1348
Lee, E. Y., Noh, S. R., Cho, K. S., and Ryu, H. W. (2001). Leaching of Mn, Co, and Ni from manganese nodules using an anaerobic bioleachingnext term method. Journal of Bioscience and Bioengineering, 92 , pp. 354-359.
Lu, Y. Z., Gong, G. Z., and Burghardt., W. (2003). Concentrations and Chemical Speciations of Cu, Zn, Pb and Cr of Urban Soils in Nanjing. China Geoderma, 115, pp. 101-111.
Mischak, H., Kubicek, C. P., and Röhr, M. (1985). Formation and location of glucose oxidase in citric acid producing mycelia of Aspergillus niger. Applied Microbiology and Biotechnology, 21, pp. 27-31.
Ma, L. Q., and Rao, G. N. (1997). Chemical fractionation of cadmium copper, nickel, and zinc in contaminated soils. Journal of Environment Quality, 26, pp. 259-264.
Mehta, K., Das, C., and Pandey, B. (2010). Leaching of copper,next term nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometallurgy, 105, pp. 89-95.
Picher, S., Drogui, P., Guay, R., and Blais, J. F. (2002). Wastewater sludge and pig manure used as culture media for bioleaching of metal sulphides. Hydrometallurgy, 65, pp. 177-186.
Park, H. S. Lee, J. U. and Ahn, J. W. (2007) The effects of Acidithiobacillus ferrooxidans on the leaching of cobalt and strontium adsorbed onto soil particles. Environment Geochemical Health, 29, pp. 303-312
Ren, W. X., Li, P. J., Geng, Y., and Li, X. J. (2009). Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. Journal of Hazardous Materials, 167, pp. 164-169.
Schinner, F. and Burgstaller, W. (1989). Extraction of Zinc from Industrial Waste by a Penicillium sp. Applied and Environmental Microbiology, 55, pp. 1153-1156.
Staelens, N., Parkpian, P., and Polprasert, P. (2000). Assessment of metal speciation evolution in sewage sludge dewatered in vertical flow reed beds using a sequential extraction scheme. Chemical Speciation and Bioavailability, 12, pp. 97–107.
Santhiya, D. and Ting, Y. P. (2005). Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Journal of Biotechnology, 116, pp. 171-184.
Santhiya, D. and Ting, Y. P. (2006). Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. Journal of Biotechnology, 121, pp. 62-74.
Tessier, A., Campbell, P. G., and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, pp. 544-851.
Thangavelu, V., Tang, J., Ryan, D., and Valix, M. (2006). Effect of saline stress on fungi metabolism and biological leaching of weathered saprolite ores. Minerals Engineering, 19, pp. 1266-1273.
Veglio, F. (1996). The optimization of manganese dioxide bioleaching by fractional factorial experiments. Process Biochemistry, 31, pp. 773-785.
Veglio, F., Beolchini, F., Gasbarro, A., Toro, L., Ubaldini, S., and Abbruzzese, C. (1997). Batch and semi-continuous tests in the bioleaching of manganiferous minerals by heterotrophic mixed microorganisms. International Journal of Mineral Processing, 50, pp. 255-273.
Valix, M., Usai, F., & Malik, R. (2001). Fungal bioleaching of low grade laterite ores. Minerals Engineering, 14, pp. 197-203.
Wolschek, M. F. and Kubicek, C. P. (1999). Biochemistry of citric acid accumulation by Aspergillus niger. In: Citric Acid Biotechnology (B. Kristiansen, M. Mattey and J. Linden, Editors), pp. 11-31. Taylor and Francis, London
Wu, H. Y., and Ting, Y. P. (2006). Metal extraction from municipal solid waste (MSW) incinerator fly ash - Chemical leaching and fungal bioleaching. Enzyme and Microbial Technology, 38, pp. 839-847.
Xu, T. J., and Ting, Y. P. (2004). Optimisation on bioleaching of incinerator fly ash by Aspergillus niger - use of central composite design. Enzyme and Microbial Technology, 35, pp. 444-454.
Yang, J., Qunhui Wang, Qi Wang, and Wu, T. (2009). Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger. Bioresource Technology, 100 , pp. 254-260.
沈明來 (2000). 實驗設計學. 九州圖書公司,台北.
胡紹華 (2007). 電路板業之含重金屬污泥資源化處理之研究. 國立成功大學,資源工程研究所,博士論文。
張國忠 (2003). 含重金屬污泥再利用技術介紹. 台灣環保產業雙月刊, 第34期,第 5-7 頁。
張聖雄、陳見財 及 陳良棟 (2007). 廢水生物處理程序常見問題實務探討. 工業污染防治季刊,第 97 期,第 69-87 頁。
蔡敏行、李伯興 及 胡紹華 (2002). 含重金屬污泥資源化關鍵技術. 泥渣廢棄物資源化技術研討會論文集,第 47-64 頁.
經濟部工業局 (2003). 廢水污泥減量技術手冊. 台北.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔