跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林逸婷
研究生(外文):Yi-Ting Lin
論文名稱:倒傳遞類神經網路於股價交易點之預測
論文名稱(外文):Backpropagation Neural Network Model for Stock Trading Points Prediction
指導教授:林君瀌林君瀌引用關係
指導教授(外文):Jun-Biao Lin
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:金融理財研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:30
中文關鍵詞:技術指標倒傳遞類神經網路股價預測
外文關鍵詞:technical indicatorsBackpropagation neural network (BPN)stock forecasting
相關次數:
  • 被引用被引用:3
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在高速發展的科技與網路下多數的股價都已數據化,因此資料的取得變得相當的方便與快速。但是,人們卻很難在短時間內將大量且複雜的資料作系統化的整理與分析。人工智慧的技術便是擅長於處理這般複雜的問題,進而變成預測與分析股市資訊的工具之一。
倒傳遞類神經網路在這幾十年間快速發展,尤其是運用在金融領域上,比方股價預測、金融危機預測、匯率走勢預測與投資組合管理上,成果是相當顯著。本研究中,運用數個技術指標來分析大量的歷史資料用以加強股價的預測能力,再者配合倒傳遞類神經網路來訓練此模型。最後,倒傳遞類神經網路即可預測到可能的交易點。其中,技術指標包含隨機指標、相對強弱指標、指數平滑異同移動平均線、動向指標、乖離率、全體外資與融資餘額。
實證結果顯示,技術指標結合倒傳遞類神經網路的預測方法在一段期間的訓練下,即使績效比買入持有法來得好,但並非所有的預測股價皆能獲得正報酬。然而,此實證提供一個論述即便倒傳遞類神經網路在金融領域中擅長於預測的股價,但是輸入變數仍會左右著交易決策的準確性。總而言之,設定適當的輸入變數在未來的研究中是相當重要的課題。
According to the high development of technology and internet, many of stock data are digitalized. Hence, it becomes convenience and fast to obtain the data from file transfer; however, the huge and complicated information are hard to be systemized and analyzed by human beings in a short time. Artificial intelligence (AI) techniques are excellent in dealing with the complicated problems; therefore, they could be the tools of predicting and analyzing the stock market information.
The Backpropagation Neural Network (BPN) approach rapidly rises in these years, especially using in finance area such as, the prediction of stock prices, financial crisis prediction, the forecasting of exchange rate movement, and portfolio management, the performance is outstanding. In this research, several technical indicators are applied to analysis of a large number of historical data in order to enhance the predictability of the particular stocks. According to the technical indices, they are inputted to the BPN to train the model. Therefore, the possible turning points could be detected by BPN. Besides, the technical indicators including Stochastic, Relative Strength Index (RSI), Moving Average Convergence and Divergence (MACD), Directional Movement Index (DMI), Deviation rate (BIAS), foreign capital, and the suspension of margin purchase.
The results of this research show that the combination of different indicators using the BPN approach is superior to the buy and hold strategy but still cannot reach positive returns of the target stocks after a period of training. As the result, the study provides a statement that even though the BPN approach is good at forecasting stock price in finance area; the input factors still play a significant role in determining the accuracy of trading decisions. In brief, settle on the appropriate input factor is still a crucial lesson for researching in the future.
摘要 i
ABSTRACT ii
致謝 iv
Contents v
List of Figures vi
List of Tables vi
1. Introduction 1
2. Literature Survey 2
3. Technical Indicators 5
3.1 Relative Strength Index (RSI) 5
3.2 Moving Average Convergence Divergence (MACD) 6
3.3 Stochastic (KD Line) 7
3.4 Directional Movement Index (DMI) 7
3.5 Deviation Rate (BIAS) 9
4. Methodology 10
4.1 Backpropagation Neural Network 10
4.1.1 The Learning Environment 11
4.1.2 Neural Network Training 11
4.2 DATA 12
4.2.1 Candidate Stocks Screening: 12
4.2.2 Input Variables Selection: 12
5. Empirical Results 13
5.1 The Steps of Research 13
6. Conclusion 16
References 18
References
Brock, W., Lakonishok, J., LeBarn, B., (1992) Simple Technical Trading Rules and the Stochastic Properties of Stock Returns, the Journal of Finance, vol.47, Issue 5, 1731-1764.
Chang, P.-C., Wang, Y.-W., and Yang, W.-N., (2004), An Investigation of the Hybrid Forecasting Models for Stock Price Variation in Taiwan, J. Chin. Inst. Ind. Eng., vol.21, No. 4, pp. 358-368.
Chen, W.-H. and Shih, J.-Y., (2006) Comparison of Support-vector Machines and Backpropagatio Neural Networks in Forecasting The Six Major Asian Stock Markets, Int. J. Electronic Finance, vol. 1, No. 1.
Choudhry, R. and Garg, K., (2008) A Hybrid Machine Learning System for Stock Market Forecasting, World Academy of Science, Engineering and Technology 39.
Chang, P.-C., Fan, C.-Y., and Liu, C.-H., (2009) Integrating a Piecewise Linear Representation Method and a Neural Network Model for Stock Trading Points Prediction, IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, vol. 39, No.1.
Fernandez-Blanco, P., Bodas-Sagi, D., Soltero, F., and Hidalgo, J.-I., (2008) Techical Market Indicators Optimization using Evolutionary Algorithms.
Graham, R., (2004) Neural Networks for Real-time Path Finding in Computer Games, ITB J., vol. 9, pp. 223-230.
Khajanchi, A., Artificial Neural Networks: The Next Intelligence.
Kryzanowski, Galler and Wright, (1993) Using Artifical Neural Networks to Pick Stocks, Financial Analysts Journal, pp. 21-27.
Kim, K.-J. and Han, I., (2000) Genetic Algorithms Approach to Feature Discretization in Artificial Neural Networks for the Prediction of Stock Price Index, Expert Syst. Appl., vol.19, pp. 125-132.
Lane, G.-C., (1984) Lane’s Stochastics, Technical Analysis of Stocks and Commodities magazine; 2: 87-90.
Lee, C.-H. and Park, K.-C., (1992) Prediction of Monthly Transition of The Composition Stock Price Index Using Recurrent Backpropagation, Int. Conf. on Artificial Neural Networks, Brighton, UK, pp. 1629-1632.
Li, E.-Y., (1994) Artificial Neural Networks and Their Business Applications, Information & Management 27, pp.303-313.
Liao, G.-C. and Tsao, T.-P., (2006) Application of Fuzzy Neural Networks and Artificial Intelligence for Load Forecasting, IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 330-340, Jun.
Marijana Z. MS, (1998) Neural Network Applications in Stock Market Predictions-A Methodology Analysis.
Roman, J. and Jameel, A., (1996) Backpropagation and Recurrent Neural Networks in Financial Analysis of Multiple Stock Market Returns, Proceedings of the 29th Annual Hawaii International Conference on System Sciences.
Schoeneburg, E., (1990) Stock Price Prediction Using Neural Networks: A Project Report, Neurocomputing, vol. 2, pp. 17-27.
Stawicki, S. -P., (2007) Application of Financial Analysis Techniques to Vital Sign Data: a Novel Method of Trend Interpretation in the Intensive Care Unit, OPUS 12 Scientist, vol. 1, No.1.
Tang, Y., Xu, F., Wan, X., and Zhang, Y.-Q., (2002) Web-based Fuzzy Neural Networks for Stock Prediction.
Tsai, C.-F. and Wang, S.-P., (2009) Stock Price Forecasting by Hybrid Machine Learning Techniques.
Wong, W.-K., Manzur, M., and Chew, B.-K., How Rewarding Is Technical Analysis? Evidence from Singapore Stock Market, NUS, Department of Economics Working Paper No. 0216.
Yan, W. and Clack, C.-D, Evolving Robust Solutions for Hedge Fund Stock Selection in Emerging Markets, GECCO’07, London, England, United Kingdom, ACM 978-1-59593-697-3/07/0007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳忠信:〈巨震重現──試析向陽〈黑暗沉落下來〉之九二一地震書寫〉,《國文天地月刊》第251期,2006年4月,頁60-63。
2. 陳忠信:〈巨震重現──試析向陽〈黑暗沉落下來〉之九二一地震書寫〉,《國文天地月刊》第251期,2006年4月,頁60-63。
3. 陳忠信:〈巨震重現──試析向陽〈黑暗沉落下來〉之九二一地震書寫〉,《國文天地月刊》第251期,2006年4月,頁60-63。
4. 陳忠信:〈巨震重現──試析向陽〈黑暗沉落下來〉之九二一地震書寫〉,《國文天地月刊》第251期,2006年4月,頁60-63。
5. 陳雅莉:〈向陽工坊台灣文學代表性網站〉,《書香遠傳》第21期,2005年2月10日,頁61-63。
6. 陳雅莉:〈向陽工坊台灣文學代表性網站〉,《書香遠傳》第21期,2005年2月10日,頁61-63。
7. 陳雅莉:〈向陽工坊台灣文學代表性網站〉,《書香遠傳》第21期,2005年2月10日,頁61-63。
8. 陳雅莉:〈向陽工坊台灣文學代表性網站〉,《書香遠傳》第21期,2005年2月10日,頁61-63。
9. 林燿德:〈遊戲規則的塑造者──綜論向陽其人其詩〉,《文藝月刊》第200期,1986年2月,頁54-67。
10. 林燿德:〈遊戲規則的塑造者──綜論向陽其人其詩〉,《文藝月刊》第200期,1986年2月,頁54-67。
11. 林燿德:〈遊戲規則的塑造者──綜論向陽其人其詩〉,《文藝月刊》第200期,1986年2月,頁54-67。
12. 林燿德:〈遊戲規則的塑造者──綜論向陽其人其詩〉,《文藝月刊》第200期,1986年2月,頁54-67。
13. 林政華:〈新瓶舊酒依然香──我讀《向陽台語詩選》〉,《文訊月刊》第199期,2002年5月,頁26-27。
14. 林政華:〈新瓶舊酒依然香──我讀《向陽台語詩選》〉,《文訊月刊》第199期,2002年5月,頁26-27。
15. 林政華:〈新瓶舊酒依然香──我讀《向陽台語詩選》〉,《文訊月刊》第199期,2002年5月,頁26-27。