(3.238.7.202) 您好!臺灣時間:2021/02/26 15:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉瀚文
研究生(外文):Han-Wen Yeh
論文名稱:利用非平衡磁控濺鍍Cr-C-N薄膜機械性質之研究
論文名稱(外文):Study of Mechanical Properties of Cr-C-N Coatings by Using the Unbalanced Magnetron Sputtering
指導教授:楊玉森
指導教授(外文):Yu-Sen Yang
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:125
中文關鍵詞:C2H2流量比反應性非平衡磁控濺鍍法Cr-C-N薄膜
外文關鍵詞:C2H2 flow rate ratioReactive unbalanced magnetron sputteringCr-C-N films
相關次數:
  • 被引用被引用:6
  • 點閱點閱:306
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
Cr-C薄膜具高硬度、低摩擦係數、耐磨耗及抗沾黏等優點。本研究利用反應性非平衡磁控濺鍍法在SKH51高速鋼表面上濺鍍Cr-C-N薄膜,以Cr為中介層提升Cr-C-N與基材的附著性。以田口實驗計畫法規畫L18(61×36)直交表實驗,並探討其七個控制因子對薄膜硬度及摩擦係數之影響。由實驗結果得知硬度最佳化確認實驗驗證能有效提升,平均硬度由未鍍膜前的Hv790提升至Hv2665。與初始參數相比,S/N增益高達14.86 dB。
藉由硬度最佳化參數,改變單一因子實驗,各別探討顯著因子C2H2流量比(C2H2/ C2H2+N2)、鉻靶電流對其薄膜結構及性質的影響。固定靶材電流在5A時,改變乙炔流量比0%、20%、40%、60%、80%及100%,從XRD及TEM分析顯示在乙炔流量比0%時,薄膜為Cr2N+CrN混合相,随著乙炔流量比增到20%、40%其相為分別為Cr2(N,C)+Cr(N,C)、Cr(N,C)+Cr23C6,薄膜硬度因碳原子固溶強化從乙炔流量比0%為Hv2465增加至乙炔流量比40%時,最高之硬度值Hv2665;在乙炔流量比60%後,薄膜轉變為非晶質結構嵌入碳化物Cr23C6+Cr7C3,硬度會急速下降,在80%時有最低硬度Hv1643。
在改變不同靶電流的實驗中,固定乙炔流量比為80%,改變鉻靶材電流1 ~5 A。由檢測結果可得知配合鉻靶電流在2 A以下時,其薄膜結構轉變成非晶質DLC結構嵌入碳化物CrC,因而可有效降低摩擦係數及耐磨耗性質。在2 A時有最低之摩擦係數0.26及最佳之磨耗率4.17E-06 mm3‧N-1‧m-1。
The Cr-C-N films have excellent properties including hardness, low coefficient of friction, wear resistance and anti-sticking. In this study, the Cr-C-N films are deposited on high speed tool steel (SKH51) by the reactive unbalanced magnetron sputtering process. Meanwhile, a interlayer consisted of Cr between the Cr-C-N layer and the substrate is prepared for increasing the adhesion strength. In experimental design, the L18(61×36) orthogonal array experiments are used. The effects of the seven control factors on harness and coefficient of friction properties of the Cr-C-N films were also investigated. Compared to the undeposited substrate of hardness could be increased form Hv790 to Hv2665. From the results of verification analysis, the maximum gain of S/N was 14.86 dB, compared to the initial condition.
One by one factorial experiments were carried out in order to invertigate the effects of the most two significant factors C2H2 flow rate ratio(C2H2/ C2H2+N2) and Cr target current. When fixed the target current at 5A, change the C2H2 flow rate ratio at 0%, 20%, 40%, 60%, 80% and 100%. The result of XRD and TEM of C2H2 flow rate ratio show that C2H2 flow rate ratio At 20%, there is Cr2N and CrN mixed phase present, and the films start to become the mixed phase Cr2(N,C)+Cr(N,C), Cr(N,C)+Cr23C6 with C2H2 flow rate ratio increasing from 0% to 20% and 40%. Meanwhile, the hardness of films were decrease form Hv2465 to Hv2665 for solid solution strengthening; However, When the films structures were amorphous with mixed carbides Cr23C6+Cr7C3 at C2H2 flow rate ratio exceed 60%, the hardness rapidly decreased, the lowest of the hardness Hv1643 at 80%.
When fixed the C2H2 flow rate ratio at 80%, change the target current at 5A, 4A, 3A, 4A and 5A. The results of target current showed that the film structures transforms to amorphous-like carbon (DLC) with carbide CrC at the target current is below 2A, However, performed the lowest coefficient of friction and wear rate were 0.26 and 4.17E-06 mm3‧N-1‧m-1, respectively. It could be effectively reduce the coefficient of friction, and enhance the wear resistance property.
摘要 I
Abstract II
誌謝 IV
表目錄 VII
圖目錄 VIII
第1章 緒論 1
1.1前言 1
第2章 基礎原理與文獻回顧 3
2.1 濺鍍原理 3
2.1.1 濺鍍技術總類 3
2.1.2 濺鍍原理 7
2.1.3 平衡/非平衡磁控濺鍍系統 13
2.1.4 薄膜成長過程 16
2.1.5 鍍膜成長微結構模型 21
2.2 CrN、CrC與CrCN薄膜性質 24
2.2.1 CrN薄膜機械性質及組織結構 24
2.2.2 CrC薄膜機械性質及組織結構 26
2.2.3 Cr-C-N薄膜機械性質及組織結構 29
2.3 田口實驗計畫法 31
2.4 磨耗理論及磨耗機構 33
2.4.1 磨料磨耗(Abrasive Wear) 33
2.4.2 表面疲勞磨耗(Surface fatigue Wear) 34
2.4.3 黏著磨耗(Adhesive Wear) 35
2.4.4 氧化或其他化學反應 36
2.4.5 擴散磨耗 36
2.5 薄膜性質分析原理與設備介紹 37
2.5.1 薄膜厚度量測、SEM顯微結構 37
2.5.2 X-ray繞射分析(XRD) 39
2.5.3 硬度試驗 42
2.5.4 附著性試驗 42
2.5.5 水滴接觸角檢測 45
2.5.6 磨耗試驗(Pin-on-disk) 46
2.5.7 表面色澤分析 48
2.5.8 拉曼(Raman)光譜分析 49
2.5.9 穿透式電子顯微鏡(TEM) 50
第3章 實驗設計與配置 51
3.1 實驗設計與目的 51
3.2 實驗材料與濺鍍設備 54
3.3 實驗流程基材準備與前處理 57
3.4 實驗流程 59
第4章 結果與討論 62
4.1 Cr-C-N沉積速率前置實驗 62
4.2 田口L18實驗結果與討論 63
4.2.1 田口實驗結果 63
4.2.2 田口最佳化分析 64
4.2.3 硬度最佳化確認實驗 69
4.3 改變乙炔流量對Cr-C-N薄膜硬度之影響 71
4.3.1 晶體結構 73
4.3.2 機械性質 77
4.4 改變鉻靶電流對Cr-C-N薄膜摩擦係數之影響 88
4.4.1 晶體結構 90
4.4.2 機械性質 93
第5章 結論 101
第6章 參考文獻 103
附錄A-田口L18組Cr/CrCN薄膜表面型態及橫截面 107
附錄B-田口L18組磨耗軌跡影像及機制判別 112
附錄C-田口L18組磨耗軌跡影像及機制判別 117
附錄D-乙炔流量實驗Cr/CrCN薄膜表面型態及橫截面 120
附錄E-乙炔流量之壓痕試驗 122
附錄F-靶電流實驗Cr/CrCN薄膜表面型態及橫截面 123
附錄G-靶電流實驗之壓痕試驗 125
[1]邱松茂,2007,表面工程學,國立高雄第一科技大學,上課講義
[2]Wei-Yu Ho, Cheng-Hsun Hsu, Dung-Hau Huang, Yen-Ping Cheng, Yen-Chun Lin, Chi-Lung Chang, Surf. Coat. Technol.188-189 (2004)129-134
[3]Y.L.Su, W.H. Kao, 2001, Tribology and application of Ti-C:H- and Cr-C:H-coated cemented tungsten carbide substrates , Surface and Coatings Technology ,vol 137, pp.293-303.
[4]陳建任,1999,PVD/CVD真空鍍膜設備專題研究,金屬工業研究發展中心,經濟部技術處
[5]Donald M. Mattox, 1998, HANDBOOK OF PHYSICAL VAPOR DEPOSITIO (PVD) PROCESSING, Westwood, N.J.:Noyes Publication
[6]M.Van Stappen., 1995, State of the art fro the industrial use of ceramic PVD Coatings, Surface and Coating Technology, vol74-75, pp.629~633.
[7]Yucong Wang, 1997, A Study of PVD coatings and die materials for extended die-casting die life, Surface and Coating Technology, vol.94-95, pp.60~63
[8]鍾永文,2003,物理蒸鍍氮化鉻鍍膜於碳化鎢基材高溫氧化性能之研究,國立高雄第一科技大學,碩士論文
[9]金屬工業研究發展中心,1998,金屬加工用刀具材料及處理技術手冊,高雄市
[10]楊玉森,物理蒸鍍技術在3C 產業之應用趨勢簡報,金屬工業研究發展中心
[11]郭鑑瑩,2003,非平衡磁控物理濺鍍鈦鋁碳氮(TiAlCN)鍍膜於高速鋼基材上之高溫氧化性能研究,國立高雄第一科技大學,碩士論文
[12]陳寶清,1992,真空表面處理工程,傳勝出版社
[13]W.R. Grove, 1840, On Some Phenomena of the Voltaic Discharge. The Philosophical Magazine, Vol.16, pp.478-482
[14]鎢基材高溫氧化性能之研究,國立高雄第一科技大學,碩士論文
[15]張秉書,2003,以非平衡磁控濺鍍法製備TiN硬質薄膜之研究,國立台灣師範大學工業教育學系,碩士論文
[16]柯賢文,2005,表面與薄膜處理技術,全華出版社,台灣
[17]楊玉森,2006,表面工程學上課講義,國立高雄第一科技大學
[18]O.Almen, G.Bruce, Nuclear Instrument and Methods,Vol.11, P.257,1961
[19]田民波,2007,薄膜技術與薄膜材料,清華大學出版社,北京
[20]B.Window, Savvides. N, 1986, Charged particle fluxes from planar magnetron sputtering sources. Journal of Vacuum Science Technology. Vol. A4(2), pp.196.
[21]黃國平,2007,利用非平衡磁控濺鍍法濺鍍TiN/ZrN多層膜之研究,國立高雄第一科技大學,碩士論文
[22]羅吉宗,2005,薄膜科技與應用,全華出版社,台灣
[23]王建義譯、白木靖寬/吉田貞史著,2003,薄膜工程學,全華出版社,台灣
[24]吳建文,2008,磁性顯微術,國立中山大學,碩士論文
[25]J.A.Thornon,1974,Influence of apparatus geometry and deposition conditions on the structure and topography of thick szputtered coatings.Journal of Vacuum Science Technology.Vol.11, pp.666-670
[26]R.D. Bland, G.J. Kominiak, D.M. Mattax, 1984, Journal of Vacuum Science Technology, A2(4), pp.671.
[27]R.Messier, A.P. Giri, R.A. Roy, 1984, Revised Structure Zone Model for Thin Films Physical Structure.Journal of Vacuum Science Technology, A2(2), pp.671.
[28]D.P.Monaghan, 1991, Surface and Coating Technology, Vol.59, pp.21-25.
[29]P.G. Mikell, 2002, Fundamentals of Modern Manufacturing. 2nd ed. ,New York.
[30]J.A. Sue, A.J. Perry, J.Vetter, 1994, Young’s modulus and stress of CrN deposited by cathodic vacuum arc evaporation, Surface and Coatings Technology,Vol.68-69,pp.126~130.
[31]C. Friedrich et al., 1995, X-ray diffractometry analysis of r.f.-sputtered hard coatings based on nitrides of Ti ,Cr ,Hf, Surface and Coatings Technology,Vol.74-75,pp.279~285.
[32]Attar, T. Johannesson, 1995, Adhsion an X-ray elastic constant evaluation of CrN coating, Thin Solid Films, Vol.258,pp.205~212
[33]V. G. Ivanchenko and T. V. Mel''nichenko, 1911, Metallofizika (Kiev), Vol.13, p.p.23-30.
[34]H.N. Kyung, J.J. Min, G.H. Jeon, 2000, A study on the high rate deposition of CrNX films with controlled microstructure by magnetron sputtering, Surface and Coatings Technology, Vol.131,pp222-227.
[35]黃正豐,2010,氮氣流量對CrN薄膜抗沾黏性質影響之研究,國立高雄第一科技大學,碩士論文
[36]楊玉森,2008,物理冶金,國立高雄第一科技大學,上課講義
[37]李新中,2008,精密模具材料與實驗,國立高雄第一科技大學,上課講義
[38]M. Schwartz, 1992, Composite Materials Handbook. 2nd ed. McGraw-Hill, New York
[39]E. Rudy, 1969, Part V. Compendium of Phase Diagram Data, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems, Report No. AFML-TR-65-2, Contract No. USAF 33(615)-1249 and 33(615)-67-C-1513, Air Force Materials Laboratory; Wright-Patterson Air Force Base, Ohio; pp. 1-689
[40]Ching-An Jeng, et al., 2002, Erosion damage and surface residual stress of Cr3C2/Al2O3 composite, Materials Chemistry and Physics, Vol.78, pp.278-287.
[41]楊玉清,2002,機性材料Ⅰ,科友出版社,pp18-19
[42]B. Warcholinsk, A. Gilewicz, Z. Kuklinski, P. Myslin ski, 2009, Arc-evaporated CrN, CrN and CrCN coatings, Vacuum , Vol. 137, pp.715–718
[43]Darja Kek Merl , Peter Panjan , Miha Cˇ ekada , Marijan Macˇek, 2004, The corrosion behavior of Cr-(C,N) PVD hard coatings deposited on various substrates, Electrochimica Acta, Vol. 49, pp.1527–1533.
[44]F. Schuster, F. Maury, J.F. Nowak, C. Bernard, 1991, Characterization of chromium nitride and carbonitride coatings deposited at low temperature by organometallic chemical vapour deposition, Surface and Coatings Technology, Vol. 46, pp.275-288.
[45]G.G. Fuentes, M.J. Díaz de Cerio, J.A. García , R. Martínez , R. Bueno , R.J. Rodríguez , M. Rico , F. Montalá , Yi Qin, 2008, Gradient CrCN cathodic arc PVD coatings, Surface and Coatings Technology, Vol. 203, pp.670-674
[46]M. Diesselberg, H.-R. Stock, P. Mayr, 2004, Friction and wear behaviour of PVD chromium nitride supported carbon coatings, Surface and Coatings Technology, Vol. 188-189, p.p.612–616
[47]S. Hertzman, 1987, Metall. Trans.Vol.10, pp.1753-1766
[48]李輝煌,2008,田口方法品質設計的原理與實務,高立出版社,台灣
[49]余志成,2006,實驗設計與品質工程上課講義,高雄第一科技大學
[50]莊東漢,2007,材料破損分析,P281-337
[51]K. Holmberg, A. Matthews, 1994, Coatings Tribology, Elsevier Science B.V..
[52]許文通,17-4PH不銹鋼被切削性研究,國立中央大學,碩士論文,pp.14
[53]林志隆,2010,電子顯微鏡學,國立高雄第一科技大學,上課講義
[54]B. Jonsson, S. Hogmark, 1984, Hardness Measurements of Thin Films, Thin Solid Films, Vol.114, pp.257-269.
[55]P. J. Burnett and D. S. Rickerby, 1987,The relationship between hardness and scratch adhesion, Thin Solid Films, Vol.154, p.p.403.
[56]Yu-Sen Yang, Wesley Huang, 2010, A Study of Wear Volume Estimation of Coatings by a Numerical Method, The 7h International Forum on Advanced Material Science and Technology, Dalian, China.
[57]Ling Hao, B.R. Cheng, 2000, Sealing Processes of Anodic Coatings—Past, Present, and Future, Metal Finishing, Vol. 98, Issue 12, pp.8~18.
[58]Taguchi. G and Konishi. S, 1987, Orthogonal Arrays and Linear Graphs:Tools for Qualiity Engineering, American Supplier Institute, Inc.
[59]J.M. guilemany, J.M. Miguel, S. Vizcaino, C. Lorenzana, J. Delgado, J. Sanchez, 2002, Surface and Coatings Technology , Vol. 207, p.p. 157.
[60]J. Romero, A. Lousa, E. Martinez, J. Esteve, 2003, Surface and Coatings Technology , Vol.392, p.p.163-164.
[61]M. Cekade, P. Panjan, M. Macek, P. Smid, 2002, Comparison of structural and chemical properties of Cr-base hard coating, Surface and Coatings Technology , Vol.151-152, p.p.31-35.
[62]J. Romero, E. Martinez, J. Esteve, A.Lousa, 2004, Nanometric chromium nitride/chromium carbide multilayers by r.f. magnetron sputtering, Surface and Coatings Technology , Vol.180-181, p.p.335-340.
[63]G. Gassner, P.H. Mayrhofer, J. Patscheider, C. Mitterer, 2007, Thermal stability of nanocomposite CrC/a-C:H thin films, Thin Solid Films, Vol.515, p.p.5411-5417.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔