[1.1]鄧國欽,CO2雷射搭配MIG電弧混合銲接鋁合金6061多目標最佳化製程技術,高雄,2006。
[1.2]李力鈞,現代激光加工及其裝備,北京:北京理工大學出版社,1993。
[1.3]張源峰,CO2雷射搭配MIG電弧混合銲接鋁合金6061製程技術開發,國立高雄第一科技大學碩士論文,高雄,2004。[1.4]L. Liu, X. Liu and S. Liu, Microstructure of laser- TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer, 2006。
[1.5]M. Gao, X. Zeng, and Q. Hu, Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding,2006。
[1.6]M. Gao, X. Zeng, Q. Hu, and J. Yan, Laser-TIG hybrid welding of ultra- fine grained steel, 2008。
[1.7]G.Tani,G.Campana,A.Fortunato,and A.Ascari,The influence of shielding gas in hybrid LASER–MIG welding,2007。
[1.8]K. Behler, J. Berkmanns, A. Ehrhardt, W. Frohn, Laser beam welding of low weight materials and structures,1997。
[1.9]L. Liu , J. Wang, G. Song, Hybrid laser–TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy,2003。
[1.10]J.Matsuda,A.Utsumi,M.Kstsumura,M.Hamasaki and S.Nagata,TIG or MIG arc augmented laser welding of thick mild steel plate,Joining and materials 1(1),pp.31-34,1988。
[1.11]T.Graf and H.Staufer,Laserhybrid process at Volkswagen,Welding journal 82(1),pp.43-48,2003。
[1.12]M.EL Rayes,C.Walz and G.Sepold,The influence of various hybrid welding parameters on bead geometry,Welding Journal,pp.147-153,2004。
[1.13]Y. Naito,Observation of Keyhole behavior and melt flows during laser-Arc hybrid welding,NKK Technical review 86,pp.8-12,2002。
[1.14]J.Zhou,H.L. Tsai,P.C.Wang,R.J.Menassa and S.P.Marin,Modeling of HybridLaser-MIG Keyhole Welding Process,Department of mechanical and aerospace engineering and engineering mechanics,pp.1-7,2004。
[1.15]M.Pastor,H.Zhao,R.P. Martukanitz and T.Debroy,Porosity Underfill and Magnesium Loss during Continuous Wave Nd:YAG Laser Welding of ThinPlates of Aluminum Alloys 5182 and 5754,Department of materials science and engineering,pp.207-216,1999。
[1.16]M.Ono,Y.Shinbo,A.Yoshitake and M.Ohmura,Development of laser-arc hybrid welding,NKK Technical Review No.86,pp.8-12,2002。
[1.17]A.Matsunawa,J. D.Kim and S.Katayama,Porosity Formation in Laser Welding-Mechanism and Suppression Methods,Joining and welding research institute,pp.73-82,1997。
[1.18]S. Katayama,Y.Yamaguchi,M.Mizutani and A.Matsunawa,Evaluation of Mechanical Properties of Laser-Welded Aluminum Alloy,Joining and welding research institute,pp.93-102,1997。
[1.19]M.Kutsuna and Q.Yan,Study on porosity formation in laser welds in aluminium alloys(Report1):Effects of hydrogen and alloying elements, Welding international,Vol.12,No. 12,pp.20-32,1998。
[1.20]L.Liu,G. Song,G.Liang and J.Wang,Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B-mechanism and remedy,Materials Science and Engineering A390,pp.76-80,2005。
[1.21]Haboundou,P.Peyre,A.B.Vannes and G.Peix,Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminum alloys,Materials Science and Engineering A363pp.40-52,2003。
[1.22]S. Katayama,N.Seto,J.D.Kim and A.Matsunawa,Formation Mechanism and Suppression Procedure of Porosity in High Power Laser Welding of Aluminum Alloys,Section C-ICALEO,pp.24-33,1998。
[1.23]S. Katayama,N. Seto,J.D. Kim and A.Matsunawa,Formation Mechanism and Reduction Method of Porosity in Laser Welding of Stainless Steel,Proc of ICALEO,pp.83-92,1997。
[1.24]S. Katayama,S. Kohsaka,M. Mizutani,K. Nishizawa and A. Matsunawa, Pulse Shape Optimization for Prevention in Pulsed Laser Welding of Stainless Steels,ICALEO,pp.487-557,1993。
[1.25]S. Katayama,N. Seto,J.D. Kim and A. Matsunawa,Formation Mechanism and Reduction Method of Porosity in Laser Welding of Stainless Steel,Proc. of ICALEO,pp.83-92,1997。
[1.26]S. Katayama,N. Seto,J.D. Kim and A. Matsunawa,Formation Mechanism and suppression Procedure of Porosity in High Power Laser Welding of Aluminum Alloys,Section C-ICALEO,pp.24-33,1998。
[1.27]S. Tsukamoto et al.,Development of high power CO2 laser welding process,Science and Technology of Welding and Joining,Vol.6,No.6,pp363 -367 2001。
[1.28]T.H. Kim,Porosity Formation in Laser-Beam Materials Process,Journal of Materials Science Letters,pp.400-402,1991。
[1.29]魏智斌,多重品質特性下產品之最佳參數設計,國立台灣科技大學碩士論文,台北,1999。[1.30]L.I.Tong and C.T.Su, Multi-Response Robust Design by Principal component analysis,Total Quality Management,Vol.8,No,6 pp.409-416, 1997。
[1.31]王春和,田口方法於線外品管多重品質特性製程最佳化之應用研究,國立交通大學碩士論文,新竹,1993。[1.32]蘇朝墩,品質工程,中華民國品質學會,台北,2002。
[1.33]C. H.Chiao and M.Hamada,Analysis Experiments with CorrelatedMultiple Responses,Journal of Quality Technology 33(4),pp.451-465,2001。
[1.34]L.I.Tong and C.T.Su,Optimizing Multi-Response Problems in the Taguchi Method by Fuzzy Multiple Attribute Decision Making,Quality and Reliability Engineering International,Vol.13,No.6,pp.25-34,1997。
[1.35]J.L. Lin,K.S. Eang,B.H. Yan and Y.S.Tarng,Optimization of the Electrical Discharge Machining Process Based on the Taguchi Method With Fuzzy Logics,Journal of Materials Process Technology,Vol.102,No.1,pp48-55, 2000。
[1.36]J.T.Wang and M.D.Jean,Optimization of Cobalt-Based Hardfacing in Carbon Stell Using the Fuzzy Analysis for Robust Design,International Journal of Advanced Manufacturing Technology,Accepted March,2004。
[1.37]J.S. Kwak,Application of Taguchi and response surface methodologies forgeometric error in surface grinding process,International Journal of Machine Tools&Manufacture ,Vol.45,pp.327-334,2004。
[2.1]左鐵釧,高強鋁合金的激光加工-高強鋁合金的激光銲接性,p.p.5-6, 國防工業出版社,北京。
[2.2]鄧國欽,CO2雷射搭配MIG電弧混合銲接鋁合金6061多目標最佳化製程技術,國立高雄第一科技大學碩士論文,高雄,2006。[2.3]王偉倫,CO2 Laser搭配TIG Arc混合銲接鋁合金6061製程技術開發,國立高雄第一科技大學碩士論文,高雄,2005年。[2.4]M.Ono,Y. Shinbo,A.Yoshitake and M.Ohmura,Development of laser-arc hybrid welding,NKK Technical Review 86,pp.8-12,2002。
[2.5]S. Tsukamoto et al.,Development of high power CO2 laser welding process, Science and Technology of Welding and Joining,Vol. 6,No.6,pp.363-367, 2001。
[2.6]Matsunawa,Problems and solutions in deep penetration laser welding, Science and Technology of Welding and Joining,Vol. 6,No.6,pp.351-354, 2001。
[2.7]S. Tsukamoto et al.,Suppression of Welding Defects in Deep Penetration CO2 Laser Welding,Proc. of ICALEO, pp5,2000。
[2.8]Albright,Proceeding of the ASM,Trends in Welding Research, New Orleans, Louisian, pp.653-665, 1981。
[2.9]孟晉科技Q&A手冊。
[2.10]許坤明,非傳統加工,全華科技圖書公司,民國94年(2005)。
[2.11]林清祺,預應變與預時效對鋁合金雷射銲接件與素材之影響,南台科技 大學碩士論文,台南,2006。[2.12]劉政益,Nd:YAG 雷射輸出波形形式與保護氣體對鎳基690 合金銲接特性影響之研究,南台科技大學碩士論文,台南,2004。[2.13]周敏傑、劉決弘、莊運清、賴文郎、楊志文,1989,雷射加工技術手冊,工業技術研究院機械工業研究所。
[2.14]P.L. Moore,Novel method of recording cooling curves during laser&laser /arc hybrid welding,International conference on the joining of materials, pp.1-8,2003。
[2.15]L. Liu,G. Song,G. Liang and J. Wang,Pore formation during hybrid laser- tungsten inert gas arc welding of magnesium alloy AZ31B—mechanism and remedy,Materials Science and Engineering A390,pp.76-80,2005。
[2.16]T. Graf and H. Staufer,Laser hybrid process at Volkswagen,Welding journal82(1),pp.43-48,2003。
[2.17]劉文海/金屬中心,鋁合金潛力產品與前景分析。
[2.18]黃錦鐘,鋁合金之銲接-銲接缺陷的種類及其對策,機械月刊,第299-307頁,1996。
[2.19]黃錦鐘,鋁合金之銲接-銲接變形、銲接裂縫、氣孔,機械月刊,第321-329 頁,1996。
[3.1]劉文海/金屬中心,鋁合金潛力產品與前景分析。
[3.2]張源峰,CO2雷射搭配MIG電弧混合銲接鋁合金6061製程技術開發,國立高雄第一科技大學碩士論文,高雄,2004。
[3.3]http://www.alcoa.com/adip/catalog/pdf/Extruded_Alloy_6061.pdf, accessed October 13, 2006
[3.4]賴耿陽,鋁熔接技術,復漢出版社,pp.8-15。
[3.5]姜志華,鋁合金電弧銲接及硬軟銲應用技術,徐氏文教基金會出版, p.p.29-58。
[3.6]S.H. Marjan,Aluminum design manual,The aluminum association.
[4.1]林清祺,預應變與預時效對鋁合金雷射銲接件與素材之影響,南台科技大學碩士論文,台南,2006。
[4.2]劉政益,Nd:YAG 雷射輸出波形形式與保護氣體對鎳基690合金銲接特性影響之研究,南台科技大學碩士論文,台南,2004。
[4.3]周敏傑、劉決弘、莊運清、賴文郎、楊志文,1989,雷射加工技術手冊,工業技術研究院機械工業研究所。
[4.4]中國銲接資訊http://www.weldr.com/weld_notes/2009/0505/content_116 58.html。
[4.5]G. Tani,G. Campana ,The influence of shielding gas in hybrid LASER-MIG welding. pp.3-4,2007。
[4.6]D. Iordachescu,L. Quintino,R. Miranda,G.Pimenta,Influence of shielding gases and process parameters on metal transfer and bead shape in MIG brazed joints of the thin zinc coated steel plates.pp.3-5,2004。
[4.7]L. Liu,G. Song,G. Liang and J.Wang,Pore formation during hybrid laser-tungsten inert gas arc welding of magnesiumalloyAZ31B-mechanism and remedy, Materials Science and Engineering A 390, pp.76-80, 2005。
[4.8]M. EL Rayes, C. Walz and G. Sepold,The influence of various hybrid weldingparameters on bead geometry, Welding Journal, pp.147-153, 2004。
[4.9]賴耿陽,鋁熔接技術,復漢出版社,pp.8-15。
[5.1]P. Hyunsung and S. Rhee, Analysis of mechanism of plasma and spatter in CO2 laser welding of galvanized steel,Optics & Laser Technology 31,pp. 119-126,1999.。
[5.2]U. Bilge,C.E. Jurczyszyn and W.C. Jeauwine,Laser welding method,US Patent 51,1992.。
[5.3]M. Kutsuna and Q. Yan,Study on porosity formation in laser welds in aluminium alloys(Report1):Effects of hydrogen and alloying elements pp.20-32,1998。
[5.4]S. Katayama,N. Seto,J.D. Kim and A. Matsunawa,Formation Mechanism and suppression Procedure of Porosity in High Power Laser Welding of Aluminum Alloys,Joining and welding research institute,pp.24-33,1998。
[5.5]鄧國欽,CO2雷射搭配MIG電弧混合銲接鋁合金6061多目標最佳化製程技術,高雄,2006。
[5.6]左鐵釧 等箸,高強鋁合金的激光加工,國防工業出版社,北京,2002。
[5.7]S. Katayama,N. Seto,J.D. Kim and A. Matsunawa,Formation Mechanism and Suppression Procedure of Porosity in High Power Laser Welding of Aluminum Alloys,Joining and welding research institute,pp.24-33,1998。
[5.8]S. Katayama,N. Seto,M. Mizutani and A.Matsunawa,Formation Mechanism of Porosity in High Power YAG Laser Welding,Section-C ICALEO,pp.16-25,2000。
[5.9]A. Haboudou,P. Peyre,A. B.Vannes and G. Peix,Reduction of Porosity Content Generated During Nd:YAG Laser Welding of A356 and AA5083 Aluminium Alloys,Materials Science and Engineering A363,pp.40-52, 2003。
[5.10]A. Matsunawa,J.D. Kim and S. Katayama,Porosity Formation in Laser Welding –Mechanisms and Suppression Methods,Section-G ICALEO, pp.73-82,1997。
[5.11]S. Katayama,S. Kihsaka,M. Mizutani,K. Nishizawa and A.Matsunawa, Pulse Shape Optimization For Defect Prevention in Pulsed Laser Welding of Stainless Steels, ICALEO, pp.487-497, 1993。
[5.12]蘇朝墩,品質工程,中華民國品質學會,台北,2002。
[6.1]P. Hyunsung and S. Rhee,Analysis of mechanism of plasma and spatter in CO2 laser welding of galvanized steel,Optics & Laser Technology 31, pp. 119-126,1999。
[6.2]U. Bilge,C.E. Jurczyszyn and W.C. Jeauwine,Laser welding method,US Patent 51,1992。
[6.3]J. Tommi and V. Kujanpaa,High power Nd: YAG laser welding in manufacturing of vacuum vessel of fusion reactor,Fusion Engineering and Design 69,pp.349-353,2003。
[6.4]H.C. Se,H.C. Man and T.M. Ue,Effect of magnetic field on plasma control during CO2 laser welding,Optics & Technology 31,pp.363-368, 1999。
[6.5]K. Behler,J. Berkmanns,A. Ehrhardt and W. Frohn,Laser beam welding of low weight materials and structures,Materials and Design,Volume 18 Number 4/6,pp.261-267,1997。
[6.6]F. Duasinger,Laser welding of aluminum alloys:from fundamental investigation to industrial application,University of Stuttgart,Institut fuer Strahlwerkzeuge,200。
[6.7]J.A. Xia,Z. Cheng,G. Xu and X. Li,Butt weld of aluminum alloy plates 6063 and LY12 by laser beam,High-Power Lasers in Manufacturing,2000。
[6.8]G. Xu, Z. Cheng,J.A. Xia and X. Li,Laser Keyhole welding on aluminum Alloys,Jinbo Jiang Shanghai Institute of Optics and Fine Mechanics,CAS, Shanghai 201800,China,Proceedings of SPIE Vol.2888,pp.297-303,2000。
[6.9]Matsunawa and S. Katayama,CO2 laser weldability of aluminum alloys (Report 1): Effect if welding conditions on melting characteristics,Welding International,pp.2-11,1998。
[6.10]施光亮、陳冠宏,銲接小常識-鋁合金銲接Q&A,銲接與切割,第8卷 第1期,第17-19頁,1998。
[6.11]L. Liu,G. Song,G. Liang and J. Wang,Pore formation during hybrid laser- tungsten inert gas arc welding of magnesium alloy AZ31B-mechanism and remedy,Materials Science and Engineering A 390,pp.76-80,2005。
[6.12]S. Katayama,S. Uchiumi,M. Mizutani,J. Wang and K. Fujii,Penetration and porosity prevention mechanism in YAG laser-MIG hybrid welding.Welding International 21,pp.25-31,2007。
[6.13]S.C. Juang and Y.S. Tarng,Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel, Journal of materials processing technology 122,pp.33-37,2002。
[6.14]Y.S. Tarng,S.C. Juang and C.H. Chang,The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing,Journal of materials processing technology 128,pp.1-6,2002。
[6.15]紀勝財、徐立章、饒瑞倫,電漿電弧銲接參數最佳化之研究-田口方法與類神經網路之應用,銲接與切割2期14卷,第28-35頁,2004。[6.16]賴耿陽,鋁熔接技術,復漢出版社,pp.8-15。
[6.17]姜志華,鋁合金電弧銲接及硬軟銲應用技術,徐氏文教基金會出版, p.p.29-58。
[6.18]S.H. Marjan,Aluminum design manual,The aluminum association。
[6.19]王文俊,認識Fuzzy,全華科技圖書股份有限公司,台北,2005。
[6.20]蘇朝墩,品質工程,中華民國品質學會,台北,2002。
[7.1]W.M.Steen and M.Eboo,Arc augmented laser welding,Metal construction 11(7),pp.332-335,1979。
[7.2]T.P.Diebold and C.E.Albright,Laser-GTA welding of aluminum alloy5052, Welding journal 63(6),pp.18-24,1984。
[7.3]J.Matsuda and A.Utsumi,TIG or MIG arc augmented laser welding of thick mild steel plate,Joining and materials 1(1),pp.31-34,1988。
[7.4] L.A.Zadeh,Fuzzy Set,Information and control,Vol.8,pp.338-353,1965。
[7.5]賴耿陽,鋁熔接技術,復漢出版社,pp.8-15。
[7.6]姜志華,鋁合金電弧銲接及硬軟銲應用技術,徐氏文教基金會出版,pp.29-58。
[7.7] S.H.Marjan,Aluminum design manual,The aluminum association。
[7.8] 王文俊,認識Fuzzy,全華科技圖書股份有限公司,台北,2005。
[7.9] 蘇朝墩,品質工程,中華民國品質學會,台北,2002。
[7.10]Fang Yi-Chin,Tzeng Yih-Fong and Li Si-Xiang,A Taguchi PCA fuzzy- based approach for the multi-objective extended optimization of a miniature optical engine,pp.12,2008。
[7.11]L. X.Wang,A Course in Fuzzy Systems and Control,Prentice-Hall,1997。