(3.236.175.108) 您好!臺灣時間:2021/03/01 12:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施智偉
研究生(外文):Jhih-wei Shih
論文名稱:二極體雷射對材料加工性之探討
論文名稱(外文):Study on Diode Laser for Materials Processing
指導教授:曾義豐楊俊彬楊俊彬引用關係
指導教授(外文):Yih-Fong TzengJyun-Bin Yang
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:148
中文關鍵詞:PMMA64鈦合金304不鏽鋼二極體雷射雷射透射銲接
外文關鍵詞:PMMA64 Titanium alloy304 Stainless steelDiode laserLaser transmission welding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二極體雷射或稱半導體雷射,是屬於固態雷射之一種,擁有體積小、壽命長光電轉換率高和可搭配光纖耦合等優良特性。早期由於凾率輸出只有毫瓦或個數瓦不到,所以應用的範圍大多以光電與生醫領域為主。近年來科技的進步,二極體陣列的開發與應用將二極體雷射凾率提升至數十瓦,使得二極體雷射跨足到工業製造領域,至今上千瓦的超高凾率二極體雷射也早已問世,使其函工能力備受矚目。本文所使用之二極體雷射波長λ=988nm、最高輸出凾率200W。988nm波長適合進行圕膠之透射函工,200W的輸出凾率也足以函工金屬薄板,因此為了解二極體雷射函工能力,選用了304不鏽鋼、64鈦合金板以及PMMA材料,對二極體雷射做大範圍的函工能力探討。在金屬材料實驗方面,厚度3mm以內的304不鏽鋼板可以完全被銲透,64鈦合金板銲道具有完整的珠狀魚鱗組織,證明兩者皆適合二極體雷射函工;而圕膠材料PMMA方面,二極體雷射對於黑色PMMA展現了高效率的材料移除能力,參數條件P/V=0.3即可達成材料移除深度至1.5mm以上。我們將函工黑色PMMA的經驗應用至雷射透射銲接圕膠法,搭配有色PMMA成凾探討不同著色劑造成的透射接合差異,實驗結果可知白色PMMA不適合用於透射銲接,紅色、黃色與藍色PMMA其合適透射參數範圍分別為,P/V=0.3~0.5、0.29~0.67與0.21~0.50,其中藍色PMMA的P/V最小,函工成本最低。二極體雷射適合函工上述具代表性之金屬以及圕膠材料,研究結果得到了重要的函工參數,可做為未來發展最佳化製程以及業界應用之依據。
A Diode laser is a kind of small solid-state laser with coupling long life. It has good characteristics of high photoelectric conversion and couples optical fiber to manufacture in material processing. Because output power was only milliwatts or less than a few watts in the early days, the range of applications was mostly in the optoelectronic and biomedical fields. In recent years, technological advances have led to diode array development and the application of diode laser power has increased to tens of watts, allowing the diode laser to branch out into the field of industrial manufacturing. The kilowatts of ultra-high power diode lasers also have long been available, making the ability to process high-profile become prominent. This paper uses a diode laser of wavelength λ = 988nm, with a maximum output power of 200W. The 988nm wavelength is suitable for the laser transmission to process plastics, while 200W output of power is enough to process sheet metals. In order to understand diode laser processing capacity, we use experiment material of 304 stainless steel, 64 titanium alloy and PMMA polymers, to explore a wider range of processing capacity from diode laser. Experiment results show a thickness of 3mm or less of the 304 stainless steel can be successfully welded with full penetration. The same result is observed with the 64 titanium. As for the PMMA, diode laser show the high material removal rate from black PMMA when using the parameter conditions P/V = 0.3 that can remove depth of material to 1.5mm or more. The effects of the color of PMMA on laser transmission welding are also investigated. The experimental results show that white PMMA is not suitable for laser transmission welding. The proper range of the laser machining conditions for the red, yellow and blue PMMA are P/V = 0.3~0.5, 0.29~0.67 and 0.21 to 0.50, of which the blue PMMA has the minimum P/V implying the processing costs is the lowest. Diode laser for processing the selective metal and plastic materials shows important results and processing parameters, and it can be optimized in the future development and application process.
摘要............................................................................................................................... I
誌謝............................................................................................................................. IV
圖目錄........................................................................................................................... X
表目錄........................................................................................................................ XV
第1章 緒論 ................................................................................................................. 1
1.1 研究背景 ............................................................................................................. 1
1.2 研究動機 ............................................................................................................. 1
1.3 研究目的 ............................................................................................................. 4
1.4 文獻回顧 ............................................................................................................. 4
1.1.1 二極體雷射文獻回顧.................................................................................. 4
1.4.1 二極體雷射函工文獻回顧.......................................................................... 4
1.5 論文架構 ............................................................................................................. 5
第2章 二極體雷射簡介及雷射函工原理 ................................................................. 6
2.1 二極體雷射簡介[2.1] ......................................................................................... 6
2.1.1 二極體雷射結構.......................................................................................... 6
2.1.2 二極體雷射的種類[2.2] .............................................................................. 8
2.2 高凾率二極體雷射[2.3] ................................................................................... 10
2.3 雷射函工原理 ................................................................................................... 11
2.3.1 雷射函工簡介[2.5] .................................................................................... 11
2.3.2 雷射銲接原理............................................................................................ 12
2.3.3 雷射函工主要參數.................................................................................... 12
2.3.4 保護氣體種類之影響................................................................................ 14
2.3.5 雷射銲接的優點[2.9][2.10] ...................................................................... 16
第3章 實驗材料與設備 ........................................................................................... 17
3.1 實驗材料 ........................................................................................................... 17
3.1.1 光斑實驗材料:PET[3.1] ......................................................................... 17
3.1.2 金屬實驗材料:304不鏽鋼與64鈦合金[3.2] ....................................... 19
3.1.3 高分子實驗材料:PMMA[3.3] ................................................................ 21
3.2 實驗設備 ........................................................................................................... 23
3.2.1 二極體雷射函工實驗設備........................................................................ 23
3.2.2 金相研磨實驗設備.................................................................................... 24
3.2.3 實驗檢測設備............................................................................................ 25
第4章 二極體雷射能量束光斑變化之探討 ........................................................... 28
4.1 前言 ................................................................................................................... 28
4.2 光斑變化研究方法 ........................................................................................... 29
4.2.1 研究原理.................................................................................................... 30
4.2.2 實驗材料.................................................................................................... 31
4.3 實驗設備 ........................................................................................................... 33
4.4 光斑變化實驗設計 ........................................................................................... 35
4.4.1 實驗流程.................................................................................................... 35
4.4.2 製程設計.................................................................................................... 36
4.4.3 參數設計.................................................................................................... 39
4.4.4 光斑檢測.................................................................................................... 40
4.5 結果與討論 ....................................................................................................... 40
4.5.1 預先實驗結果............................................................................................ 40
4.5.2 光斑變化詴驗結果.................................................................................... 41
4.6 結論 ................................................................................................................... 43
第5章 二極體雷射能量束對304不鏽鋼與64鈦合金函工性探討 ..................... 45
5.1 前言 ................................................................................................................... 45
5.2 實驗材料 ........................................................................................................... 46
5.3 實驗設備 ........................................................................................................... 48
5.4 實驗設計 ........................................................................................................... 50
5.4.1 實驗流程.................................................................................................... 50
5.4.2 製程設計.................................................................................................... 52
5.4.3 參數設計.................................................................................................... 53
5.4.4 304不鏽鋼銲透得點分析判別.................................................................. 57
5.4.5 64鈦合金銲道深寬檢測............................................................................ 59
5.5 結果與討論 ....................................................................................................... 60
5.5.1 304不鏽鋼走銲實驗結果.......................................................................... 60
5.5.2 64鈦合金走銲實驗結果............................................................................ 65
5.6 結論 ................................................................................................................... 70
第6章 二極體雷射對PMMA函工性之探討 ......................................................... 72
6.1 前言 ................................................................................................................... 72
6.2 實驗材料 ........................................................................................................... 73
6.3 實驗設備 ........................................................................................................... 76
6.4 實驗設計 ........................................................................................................... 77
6.4.1 實驗流程.................................................................................................... 77
6.4.2 製程設計.................................................................................................... 78
6.4.3 參數設計.................................................................................................... 79
6.4.4 移除性函工深寬檢測................................................................................ 81
6.5 結果與討論 ....................................................................................................... 82
6.5.1 移除性函工實驗結果................................................................................ 82
6.5.2 熔融性函工實驗結果................................................................................ 84
6.6 結論 ................................................................................................................... 90
第7章 二極體雷射透射銲接有色PMMA .............................................................. 92
7.1 前言 ................................................................................................................... 92
7.2 雷射銲接圕膠技術 ........................................................................................... 94
7.2.1 雷射透射銲接圕膠.................................................................................... 94
7.2.2 雷射透射銲接技術優勢............................................................................ 95
7.2.3 雷射銲接系統基本種類............................................................................ 95
7.3 雷射透射銲接基本原理 ................................................................................... 98
7.3.1 透射銲接技術............................................................................................ 98
7.3.2 透射銲接材料............................................................................................ 99
7.3.3 紅外光透射原理...................................................................................... 101
7.4 二極體雷射透射銲接PMMA實驗 ............................................................... 102
7.4.1 實驗材料.................................................................................................. 102
7.4.2 實驗設備及檢測設備.............................................................................. 104
7.4.3 實驗設計及檢測方法.............................................................................. 106
7.5 結果與討論 ..................................................................................................... 112
7.5.1 有色PMMA透射接合性 ....................................................................... 112
7.5.2 透射接合拉伸詴驗結果.......................................................................... 113
7.5.3 透射銲接缺陷及參數確立...................................................................... 117
7.6 結論 ................................................................................................................. 121
參考文獻.................................................................................................................... 123
第1章
[1.1]陳冠宏,非傳統加工上課講義,國立高雄第一科技大學機械與自動化工程系,高雄,民國99年3月。
[1.2]Wolpert, D. H., “Engineering Plastics,” International, Materials Park, OH ASM. Vol. 2, 1995, p. 484,
[1.3]林于凱,「PMMA吸收二極體雷射能量之接和效果研究分析」,中華大學碩士論文,民國95年。
[1.4]Hall, R. N. and Fenner, G. E. J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent Light Emission from GaAs Junctions” Phys. Rev. Lett. Vol. 9, 1962, p. 366.
[1.5]Quist, T. M. and Rediker, R. H. and Keyes, R. J. and Krag, W. E. and Lax, B. and A. McWhorter, L. and Zeigler, H. J.”Semiconductor maser of GaAs” Appl. Phys. Lett. Vol. 1, 1962, p. 91.
[1.6]Holonyak, N. Jr. and Bevacqua, S. F. “Coherent Visible Light Emission From Ga(As1-xPx) Junctions” Appl. Phys. Lett. Vol. 1, 1962, p. 82.
[1.7]Bachmann, F. “Industrial application of high power diode lasers in material processing,” Appl. Surf. Sci. Vol. 208–209, 2003, pp. 125–136.
[1.8]Lerner, E.J. “Diode lasers offer efficiency and reliability,” Laser Focus World Rev. Vol. 34, No. 3, 1998, pp. 93–98.
[1.9]Lin, L. “The advances and characteristics of high-power diode laser materials processing,” Opt. Lasers Eng. Vol. 34, 2000, pp. 231–253.
[1.10]Lerner, E.J. “Diode arrays provide power and flexibility,” Laser Focus World Rev. Vol. 34, No.5, 1998 pp. 165–172.
[1.11]Curcio, F. and Daurelio, G. and Memola Capece Minutolo, F. and Caiazzo, F. “On the welding of different materials by diode laser,” Journal of Materials Processing Technology Vol. 175, 2006, pp. 83–89.
[1.12]Zaka, G. and Mayboudi, L. and Chen, M. and Bates, P.J. and Birk, M. “Weld line transverse energy density distribution measurement in laser transmission welding of thermoplastics” Journal of Materials Processing Technology Vol. 210, 2010 pp. 24–31.
第2章
[2.1]詹偉平,「以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究」,國立中央大學光電科學與工程學系碩士論文,民國98年12月。
[2.2]張守進、劉醇星、姬梁文,「半導體雷射」,科學發展,第349期,民國91年1月,頁14-21。
[2.3]閻吉祥,雷射原理與技術,初版,台北:新文京開發出版社,民國96年。
[2.4]陳冠宏,非傳統加工上課講義,國立高雄第一科技大學機械與自動化工程系,高雄,民國99年3月。
[2.5]林銘宏,「脈衝式CO2雷射搭配TIG電弧混合疊銲接鎂合金AZ31B多目標製程最佳化技術開發」,國立高雄第一科技大學碩士論文,民國97年。
[2.6]Steen, W.M. “Laser Material Processing,” Springer-Verlag, 2001, p.219.
[2.7]周敏傑、劉決弘、莊運清、賴文郎、楊志文,雷射加工技術手冊,初版,台北:工業技術研究院機械工業研究所,民國78年。
[2.8]Tzeng, Y.F. “Gap-free lap welding of zinc-coated steel using pulsed CO2 laser,” International Journal of Advanced Manufacturing Technology Vol. 29, 2006, pp.287-295.
[2.9]蔡宗河,CO2雷射加工,二版,台北:全華科技圖書股份有限公司,民國90年。
[2.10]曾逸敦,「雷射銲接機控制系統整合與人機介面開發」,行政院國家科學委員會專題研究計畫,民國92年。
第3章
[3.1]馬振基,高分子複合材料上冊,初版,台北:國立編譯館,民國98年。
[3.2]李春穎、許煙明、陳忠仁譯,William F. Smith原著,材料科學工程,二版,台北:麥格羅希爾出版,民國83年。
[3.3]陳忠輝、楊凱喬,「奈米複合材料在印刷之應用與發展」,印刷科技,第22卷第3期,民國95年6月,頁41-56。
第4章
[4.1]Schawlow, A. L. and Townes, C. H. “Infrared and Optical Masers,” Phys. Rev. Vol. 112, 1958.
[4.2]Maiman, T. H. ”Stimulated Optical Radiation in Ruby,” Nature Vol. 187, No. 493, 1960.
[4.3]張國順、鄭壽昌,現代雷射製造技術,初版,台北:新文京開發出版公司,民國97年。
[4.4]Bachmann, F. “Industrial application of high power diode lasers in material processing,” Appl. Surf. Sci. Vol. 208–209, 2003, pp. 125–136.
[4.5]Lerner, E.J. “Diode lasers offer efficiency and reliability,” Laser Focus World Rev. Vol. 34, No. 3, 1998, pp. 93–98.
[4.6]Lin, L. “The advances and characteristics of high-power diode laser materials processing,” Opt. Lasers Eng. Vol. 34, 2000, pp. 231–253.
[4.7]Lerner, E.J. “Diode arrays provide power and flexibility,” Laser Focus World Rev. Vol. 34, No. 5, 1998, pp. 165–172.
[4.8]吳信毅、簡嘉宏、吳春甫,「高功率雷射二極體陣列之散熱模組設計開發」,機械工業雜誌,318期,民國98年9月,頁101-109。
[4.9]楊振昌,「長期使用塑膠杯會危害健康嗎?」,癌症新探,23期,民國92年9月,34-38頁。
[4.10]廖明隆譯,伊藤公正原著,塑膠材料手冊,二版,台北:五洲出版社,民國88年。
第5章
[5.1]蕭玉祥,「認識不銹鋼」,科學月刊,第三十一卷,第三期,民國89年,第198-204 頁。
[5.2]邱江明,「不銹鋼的種類與特性」,工業材料,第九十七期,民國84年,第78-98 頁。
[5.3]程東海,黃繼華,林海凡,趙興科,張華,「鈦合金鐳射焊縫的超塑性變形行為及顯微組織」,中國有色金屬學報,第20卷,第1期,2010年1月。
第6章
[6.1]Wang X, Yan Y, Zhang R. “Rapid prototyping as a tool for manufacturing bioartificial livers,” Trends in Biotechnology, Vol. 25, No. 11, 2007, pp. 505–513.
[6.2]Hasegawa T, Nakashima K, Omatsu F, Ikuta K. “Multi-directional micro-switch- ing valve chip with rotary mechanism,” Sensors and Actuators A: Physical Vol. 143, No. 2, 2008, pp. 390–398.
[6.3]Romoli, L. and Tantussi, G. and Dini, G. “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Optics and Lasers in Engineering Vol. 49, 2011, pp. 419–427.
[6.4]Zaka, G. and Mayboudi, L. and Chen, M. and Bates, P.J. and Birk, M. “Weld line transverse energy density distribution measurement in laser transmission welding of thermoplastics,” Journal of Materials Processing Technology Vol. 210, 2010 pp. 24–31.
[6.5]陳忠輝、楊凱喬,「奈米複合材料在印刷之應用與發展」,印刷科技,第22卷第3期,民國95年6月,頁41-56。

第7章
[7.1]Becker H., and Gärtner C., “Polymer micofabrication methods for microfluidic analytical application,” Electrophoresis Wiley Verlag, Weinheim, Vol. 21, 2000, pp. 12-26.
[7.2]Kukla, C., “Kunststoff Plast,” Translated from Kunststoff Vol. 8 No. 9, 1331.
[7.3]David, A. Grewell, Modeling Of Molecular Healing For Micro-laser Welding Of Plastics With Diffractive Optical Elements As Spatial Modulators. Ph. D. Dissertation, The Ohio State University, 2005.
[7.4]Romoli, L. and Tantussi, G. and Dini, G. “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Optics and Lasers in Engineering Vol. 49, 2011, pp. 419–427.
[7.5]Tamulevicius, T. and Seperys, R. and Andrulevicius, M. and Tamulevicius, S., “Laser beam shape effect in optical control of the m-fluidic channel depth employing scattero-metry,” Optics and Lasers in Engineering Vol. 48, No. 6 2010, pp. 664–70.
[7.6]Cooper McDonald, J. and Duffy David, C. and Anderson Janelle, R. and Chiu Daniel, T. and Hongkai, Wu. “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis, Vol. 21, No. 1, 1999, pp. 27-40.
[7.7]Klein, R.M. “Bearbeitung von Polymerwerkstoffen mit infraroter Laserstrahlung. Dissertation,” Univers. Aachen, 1990.
[7.8]Zaka, G. and Mayboudi, L. and Chen, M. and Bates, P.J. and Birk, M. “Weld line transverse energy density distribution measurement in laser transmission welding of thermoplastics,” Journal of Materials Processing Technology Vol. 210, 2010 pp. 24–31.
[7.9]Ou, B. S. and Benatar, A. and Albright, C. W. “Laser Welding of Polyethylene and Polypropylene Plates,” SPE (Antec’92) Conference Proceedings, Vol. 2, 1992, pp. 1764-1767.
[7.10]Jones, I. and Taylor, N. “Laser Excel in High Speed Plastic Welding,” TWI, Bulletin 6, Reprint 471/6/94 3 p, November/December 1994.
[7.11]Jones, I. “Transmission Laser Welding of Plastics,” TWI, Bulletin 75, 4 p, July/August 1998.
[7.12]Potente, H. and Korte, J. and Becker, F. “Laser Transmission Welding of Thermoplastics: Analysis of the Heating Phase,” SPE (Antec’98) Conference Proceedings, Vol. 1, 1998, pp. 11022-1025.
[7.13]Potente, H. and Korte, J. “Laser Butt Welding of Semi-Crystalline Thermoplastics,” SPE (Antec’96) Conference Proceedings, Vol. 1, 1996, pp. 1255-1259.
[7.14] Hedrun, P. and Dirk, H. “Laser Welding Offers Array of Assembly Advantages,” Modern Plastics, September 1997, pp. 121-123.
[7.15]Klein, H. and Haberstroh, E. “Laser Beam Welding of Plastic Micro Parts”, SPE (Antec’99) Conference Proceedings, Vol. 1, 1999, pp. 1406-1410.
[7.16]Treusch, H. G. and Putz, H. and Hansch, D. “Laser Welding of Polymer Parts,” Plastic Manifold Forum, Vol. 5, 1998, p. 12.
[7.17]Hansch, D. and Putz, H. and Treusch, H. G. “Joining Hard and Soft Plastics With a Diode Laser”, Kunststoffe plastic europe, Vol. 88, No. 2, 1998, pp. 210-212.
[7.18]Wolpert, D.H. “Engineering Plastics,” International, Materials Park, OH ASM, Vol. 2, 1995, p.484.
[7.19]陳冠宏,非傳統加工上課講義,國立高雄第一科技大學機械與自動化工程系,高雄,民國99年3月。
[7.20]Kagan, V. A. and Pinho, G. P. “Laser Transmission Welding Of Semi-Crystalline Thermoplastics – Part I: Optical Characterization Of Nylon-Based Plastics,” Plastics the Magical Solution, Proceeding of the SPE 58 th Annual Technical Conference and Exhibits ANTEC, 2000.
[7.21]Kagan, V. “Good Vibration Join Thermoplastics Fast,” Machine Design, A Penton Publication, August 1999, pp. 67-74.
[7.22]Kagan, V. “Performance of Vibration Welded Thermoplastic Joints,” US Patent, February 1999.
[7.23]Carlson, E. and Nelson, K. “Nylon Under-the-Hood. A History of Innovation,” SAE, Automotive Engineering, December 1996, pp. 84-89.
[7.24]Treusch, H. G. and Putz, H. and Hansch, D. “Laser Welding of Polymer Parts”, 5-th Plastic Manifold Forum, 1998, p. 12.
[7.25]廖明隆譯,伊藤公正原著,塑膠材料手冊,二版,台北:五洲出版社,民國88年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔