中文部分
林義勳(2009)。Blog合作學習方式對於批判思考的影響—以閱讀科學文章為例。臺北市立教育大學自然科學研究所,臺北市。
邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊,306,2-9。邱皓政(2009)。量化研究與統計分析:spss中文視窗版資料分析範例解析(三版)。台北市:五南。
洪敏怡(2008)。閱讀科學讀物對國小五年級學童批判思考能力與問題解決能力的影響。臺北市立教育大學科學教育碩士學位學程,臺北市。徐臻輝(2007)。批判思考教學方案對提升國小高年級學童批判思考表現與傾向的效果以及對思考風格的影響研究。國立新竹教育大學人資處輔導教學碩士班,新竹市。張志康(2009)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響。國立台灣師範大學科學教育研究所,台北市。
教育部(2008)。國民中小學九年一貫課程綱要。台北市:教育部。
陳郡鳳(2004)。探討理想氣體動力論之建模教學對高一學生建構微觀氣體粒子運動心智模式的影響。國立臺灣師範大學科學教育研究所,台北市。
陳萬賜(2003)。以建構主義教學策略探究國小學童對生態環境議題批判思考歷程之研究。國立台北師範學院數理教育研究所,台北市。
陳麗華(1989)。國小社會科批判思考教學的省思。現代教育,7,121-135。曾聖超(2004)。以網路同儕互評系統輔助高中電腦課程教學:學習成效及同儕回饋之分析。國立交通大學理學院網路學習碩士在職專班,新竹市。鈕文英 (2006) 。教育研究方法與論文寫作。台北市: 雙葉書廊。
楊司維(2003)。資訊融入以專題為基礎之教學與學習對批判思考能力與意向影響之研究-以國小六年級自然科教學為例。國立屏東師範學院教育科技研究所,屏東市。
葉玉珠(1991)。中小學生批判思考及其相關因素之研究。國立政治大學教育研究所,台北市。
顏志賢(2004)。以網路小組合作學習模式探究國小學童批判思考之歷程。國立台北師範學院數理教育研究所,台北市。
英文部分
Abell, S. K., & Roth, M. (1995). Reflections on a fifth-grade life science lesson: Making sense of children’s understanding of scientific models. International Journal of Science Education, 17(1), 59-74.
Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching and assessing: a revision of Bloom's taxonomy of educational objectives. New York: Longman.
Bailin, S. (2002). Critical Thinking and Science Education. Science and Education, 11, 361-375.
Beyer, B. K. (1983). Common sense about teaching thinking skills. Educational Leadership, 83(41), 44-49.
Beyer, B. K. (1988). Developing a thinking skills program. Boston: Allyn & Bacon.
Boulter, C. J., & Buckley, B. C. (2000). Constructing a typology of models for science education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 41-57). Netherlands: Kluwer Academic Publishers.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (1999). How People Learn: Brain, Mind, Experience, and School. Washington, D.C.: National Academy Press.
Buckley, B. C., & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in Science Education (pp. 119-135). Netherlands: Kluwer academic Publisher.
Chang, H.-Y. (2009, April). Use of critique to enhance learning with an interactive molecular visualization of thermal conductivity. In M. C. Linn(Chair), Critique to learning science. Symposium conducted at the annual meeting of the National Association for Research in Science Teachingn, Garden Grove, CA.
Chang, H.-Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73-94.
Clark, D. B. (2006). Longitudinal conceptual change in students' understanding of thermal equilibrium: An examination of the process of conceptual restructuring. Cognition and Instruction, 24(4), 467-563.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ.: Lawrence Erlbaum Associates.
Coll, R. K., France, B., & Taylor, I. (2005). The role of models/and analogies in science education: implications from research. International Journal of Science Education, 27(2), 183-198.
Davies, P. (2000). Computerized peer assessment. Innovations in Education and Training International, 37(4), 346-355.
Davis, E. A. (2000). Scaffolding students' knowledge integration: prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837.
Ennis, R. H. (1996). Critical thinking. Upper Saddle River, N. J.: Prentice-Hall.
Ford, M. (2009). Critique and learning to construct scientific meaning. Paper presented at the National Association for Research in Science Teaching, Garden Grove, CA.
Gilbert, J. K. (1993). Models and Modeling in Science Education. Hatfield, UK: Association for Science Education.
Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Dordrecht, The Netherlands: Kluwer Academic Publisher.
Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79.
Goberta, J. D., O'Dwyerb, L., Horwitzc, P., Buckleyd, B. C., Levye, S. T., & Wilenskyf, U. (2011). Examining the relationship between students' understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653-684.
Greene, J. C., Caracelli, V. J., & Graham, W. F. (1989). Toward a conceptual framework for mixed-method evaluation designs. Educational Evaluation and Policy Analysis, 11, 255-274.
Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041.
Hestenes, D. (1995). Modeling software for learning and doing physics. In C. Bernardini, C. Tarsitani & M. Vincentini (Eds.), Thinking physics for teaching (pp. 25-66). New York: Plenum Press.
Johnson, B., & Christensen, L. (2008). Educational research : quantitative, qualitative, and mixed approaches (3rd ed.). Los Angeles: Sage Publications.
Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26.
Justi, R. S., & Driel, J. v. (2005). A case study of the development of a beginning chemistry teacher’s knowledge about models and modeling. Research in Science Education, 35(2-3), 197-219.
Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.
Lin, S. S. J., Liu, E. Z. F., & Yuan, S. M. (2001). Web-based peer assessment: feedback for students with various thinking-styles. Journal of Computer Assisted Learning, 17(4), 420-432.
Linn, M. C. (2006). The knowledge integration perspective on learning and instruction. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 243-264). New York: Cambridge University Press.
Linn, M. C., & Hsi, S. (2000). Computers, teachers, peers: Science learning partners. Mahwah, NJ: Lawrence Erlbaum Associates.
Mayfield, M. (1997). Thinking for yourself: Developing critical thinking skills through reading and writing. Belmont, CA: Wadsworth Publishing Company.
Nguyen, D. M., Hsieh, Y.-C., & Allen, G. D. (2006). The Impact of Web-Based Assessment and Practice on Students' Mathematics Learning Attitudes. Journal of Computers in Mathematics and Science Teaching, 25(3), 251-279
Paul, R., Binker, A. J., & Weil, D. (1987). Critical thinking handbook K-3. Rohnert Park, CA: Center for Critical Thinking and Moral Critique Sonoina State University.
Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486-511.
Rundell, M. (Ed.) (2002) Macmillan English Dictionary for Advanced Learners of American English. Oxford: Macmillan Education.
Saari, H., & Viiri, F. (2003). A research-based teaching sequence for teaching the concept of modeling to seventh-grade students. International Journal of Science Education, 25(11), 1333-1352.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Ache´r, A., Fortus, D., et al. (2009). Developing a Learning Progression for Scientific Modeling:Making Scientific Modeling Accessible and Meaningful for Learners. Journal of Research in Science Teaching, 46(6), 632-654.
Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205.
Sciences, N. A. o. (1996). National Science Education Standards. Washington, DC: National Academy Press.
Shen, J. (2010). Nurturing students’ critical knowledge using technology-enhanced scaffolding strategies in science education. Journal of Science Education and Technology, 19(1), 1-12.
Shen, J., & Confrey, J. (2010). Justifying Alternative Models in Learning Astronomy: A study of K–8 science teachers’ understanding of frames of reference. International Journal of Science Education, 32(1), 1-29.
Siegel, H. (1980). Critical thinking as an educational ideal. The Educational Forum, 45(1), 7-23.
Sinclair, J. (Ed.) (1997) Collins Cobuild English Dictionary. London, England: HarperCollins Publishers.
Solomon, J. (1987). New thoughts on teacher education. Oxford Review of Education, 13(3), 267-274.
Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Education, 28(9), 761-784.
Sternberg, R. J. (1994). Thinking styles: Theory and assessment at the interface between intelligence and personality. In R. J. Sterberg & P. Ruzgis (Eds.), Personality and Intelligence (pp. 169-187). New York: Cambridge University Press.
Taylor, I., Barker, M., & Jones, A. (2003). Promoting mental model building in astronomy education. International Journal of Science Education, 25, 1205–1225.
Toulmin, S. E. (1958). The uses of argument. Cambridge, England: Cambridge University Press.
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
Tsai, C.-C., Lin, S. S. J., & Yuan, S. M. (2002). Developing science activities through a networked peer assessment system. Computers & Education, 38, 241-252.
Tsai, C.-C., Liu, E. Z. F., Lin, S. S. J., & Yuan, S. M. (2001). A network peer assessment system based on a Vee heuristic. Innovations in Education and Training International, 38(3), 220-230.
Tseng, S.-C., & Tsai, C.-C. (2007). On-line peer assessment and the role of the peer feedback: A study of high school computer course. Computers & Education 49(4), 1161-1174.
Van Eemeren, F. H. (1995). A world of difference: The rich state of argumentation theory. Informal Logic, 17(2), 144-158.
Whire, B. Y. (1993). Thinker tools: causal models, conceptual change, and science education. Cognition & Instruction, 10(1), 1-100.
White, B. Y. (1993). Thinker tools: causal models, conceptual change, and science education. Cognition & Instruction, 10(1), 1-100.
Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821-842.
Xie, C. (2010). Molecular Workbenc (Version V3.0). Concord, Massachusetts: Concord Consortium, Inc.
Xie, Q., & Tinker, R. (2006). Molecular Dynamics Simulations of Chemical Reactions for Use in Education. Journal of Chemical Education, 83(1), 77-83.
Zhang, Z. (2010). Exploring Drawing and Critique to Enhance Learning from Visualizations. In Learning in the Disciplines. Proceedings of the 9th International Society of the Learning Sciences(Vol. 2, p.234), Chicago, USA: International Society of the Learning Sciences.
Zhang, Z., & Linn, M. C. (2008). Using drawings to support learning from dynamic visualizations. In International Perspectives in the Learning Sciences: Cre8ting a Learning World. Proceedings of the 8th International Conference of the Learning Sciences (Vol. 3, pp. 161-162). Utrecht, The Netherlands: International Society of the Learning Sciences, Inc.