跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張翔棋
論文名稱:線上分子模型評論活動對科學模型與化學反應理解之研究
論文名稱(外文):Designing Online Critique Activities on Molecular Models to Enhance Students’ Understanding of Scientific Models and Chemical Reactions
指導教授:張欣怡張欣怡引用關係
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:100
畢業學年度:99
語文別:中文
論文頁數:242
中文關鍵詞:線上評論科學模型理解化學反應理解分子模型
外文關鍵詞:Online CritiqueUnderstanding of Scientific ModelsUnderstanding of Chemical ReactionsMolecular Models
相關次數:
  • 被引用被引用:3
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
「評論」是科學社群中不可或缺的一部分,但目前鮮少有研究會聚焦在如何利用評論活動來做為教學活動,並藉此支持學生發展健全的科學知識。在此研究中,研究者翻譯及修改了Web-based Inquiry Science Environment(以下簡稱WISE)的課程「Will Gasoline Powered Vehicles Become a Thing of the Past?」,並在課程中發展了三個評論活動。在這三個評論活動中,研究者(即教學者)引導學生運用所學的化學反應知識分別針對科學家、同儕與虛擬同儕(泰瑞)建構的分子模型進行線上的評論,藉此研究學生在課程進行中的評論表現與如何評論不同設計者建構的分子模型,並探討學生在經歷線上分子模型評論課程後,其對科學模型的理解與化學反應學習成就的改變情形,並試圖找出可以預測學生化學反應學習成就的重要變項。
本研究是以南台灣一所公立國中八年級的學生為研究對象(n=28),由研究者進行為期2週的線上分子模型評論課程。所採用的研究方法為混合研究法(mixed methods),資料收集包含化學反應概念與科學模型理解綜合測驗(測量學生對化學反應概念與科學模型的理解)、科學模型理解量表(Likert五等分量表,測量學生對科學模型的理解)、半結構式晤談資料(探討學生對科學模型理解的改變情形)、WISE課程嵌入式評量及學生的電腦操作側錄檔。研究結果指出,當學生在評論科學家、同儕及虛擬同儕建構的分子模型時,學生使用的正面及負面評語比例、自行補充的評語內容、小組間成員對話的多寡及評論表現皆有不同。且在課程結束後,學生對於科學模型及化學反應有了更深的理解,此外,本研究亦發現,在經歷線上分子模型評論課程後,學生的「化學反應分子模型評論能力」與「對科學模型的理解」是預測其化學反應學習成就的重要變項。

Critique is essential practice in the communities of scientists but few studies focus on how to use critique as instructional activities to support students in developing robust understanding of science. This study used the Web-based Inquiry Science Environment [WISE] curriculum, “Will Gasoline Powered Vehicles Become a Thing of the Past?”, and developed three online critique activities in the curriculum. In these activities, students were guided to critique molecular models that were made by a scientist, a peer and a fictitious student, respectively. The purpose of the study is to investigate how students performed online critique and how critique enhanced students’ understanding of chemical reaction concepts and scientific models. Furthermore, variables that can predict students’ chemical reaction achievement were identified.
This two-week long curriculum was implemented in an eighth-grade class with 28 students in a public junior high school in South Taiwan. The study employed mixed research methods. Data collected included pre- and post-instructional assessments that measured students’ understanding of chemical reaction concepts and scientific models, pre- and post-instructional Likert questionnaires that measured students’ understanding of scientific models, post-instructional interviews that probed why, if any, students changed their understanding of scientific models after the curriculum, and students’ electronic notes and oral discussions during the critique activities. The results indicate that students performed differently when they critiqued the scientist’s, peer’s and fictitious student’s molecular models and that students developed more sophisticated understanding of chemical reaction concepts and scientific models after the curriculum. The results also suggest that students’ “critique ability” and “understanding of scientific models” are the important variables to predict their chemical reaction achievement after the curriculum.

中文摘要 I
英文摘要 III
目錄 V
表次 VII
圖次 X
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 4
第三節 名詞釋義 6
第四節 研究的重要性 8
第五節 研究範圍與限制 9
第貳章 文獻探討 11
第一節 科學模型的理解與科學學習 11
第二節 科學評論活動與科學學習 23
第三節 科學模型評論與科學建模 37
第參章 研究方法 45
第一節 研究設計 45
第二節 學習環境 49
第三節 研究對象 59
第四節 研究工具 61
第五節 研究流程 65
第六節 資料收集與分析 68
第肆章 研究結果與討論 89
第一節 學生評論線上分子模型的表現 89
第二節 學生對科學模型理解的改變情形 107
第三節 學生對化學反應理解的改變情形 143
第四節 探討可以預測學生化學反應學習成就的重要變項 147
第伍章 研究結論與建議 155
第一節 研究結論 155
第二節 研究建議及未來研究方向 164
參考文獻 168
附錄一 175
附錄二 181
附錄三 190
附錄四 193
附錄五 196
附錄六 199
附錄七 220
附錄八 225
附錄九 231


中文部分
林義勳(2009)。Blog合作學習方式對於批判思考的影響—以閱讀科學文章為例。臺北市立教育大學自然科學研究所,臺北市。
邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊,306,2-9。
邱皓政(2009)。量化研究與統計分析:spss中文視窗版資料分析範例解析(三版)。台北市:五南。
洪敏怡(2008)。閱讀科學讀物對國小五年級學童批判思考能力與問題解決能力的影響。臺北市立教育大學科學教育碩士學位學程,臺北市。
徐臻輝(2007)。批判思考教學方案對提升國小高年級學童批判思考表現與傾向的效果以及對思考風格的影響研究。國立新竹教育大學人資處輔導教學碩士班,新竹市。
張志康(2009)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響。國立台灣師範大學科學教育研究所,台北市。
教育部(2008)。國民中小學九年一貫課程綱要。台北市:教育部。
陳郡鳳(2004)。探討理想氣體動力論之建模教學對高一學生建構微觀氣體粒子運動心智模式的影響。國立臺灣師範大學科學教育研究所,台北市。
陳萬賜(2003)。以建構主義教學策略探究國小學童對生態環境議題批判思考歷程之研究。國立台北師範學院數理教育研究所,台北市。
陳麗華(1989)。國小社會科批判思考教學的省思。現代教育,7,121-135。
曾聖超(2004)。以網路同儕互評系統輔助高中電腦課程教學:學習成效及同儕回饋之分析。國立交通大學理學院網路學習碩士在職專班,新竹市。
鈕文英 (2006) 。教育研究方法與論文寫作。台北市: 雙葉書廊。
楊司維(2003)。資訊融入以專題為基礎之教學與學習對批判思考能力與意向影響之研究-以國小六年級自然科教學為例。國立屏東師範學院教育科技研究所,屏東市。
葉玉珠(1991)。中小學生批判思考及其相關因素之研究。國立政治大學教育研究所,台北市。
顏志賢(2004)。以網路小組合作學習模式探究國小學童批判思考之歷程。國立台北師範學院數理教育研究所,台北市。

英文部分
Abell, S. K., & Roth, M. (1995). Reflections on a fifth-grade life science lesson: Making sense of children’s understanding of scientific models. International Journal of Science Education, 17(1), 59-74.
Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching and assessing: a revision of Bloom's taxonomy of educational objectives. New York: Longman.
Bailin, S. (2002). Critical Thinking and Science Education. Science and Education, 11, 361-375.
Beyer, B. K. (1983). Common sense about teaching thinking skills. Educational Leadership, 83(41), 44-49.
Beyer, B. K. (1988). Developing a thinking skills program. Boston: Allyn & Bacon.
Boulter, C. J., & Buckley, B. C. (2000). Constructing a typology of models for science education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 41-57). Netherlands: Kluwer Academic Publishers.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (1999). How People Learn: Brain, Mind, Experience, and School. Washington, D.C.: National Academy Press.
Buckley, B. C., & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in Science Education (pp. 119-135). Netherlands: Kluwer academic Publisher.
Chang, H.-Y. (2009, April). Use of critique to enhance learning with an interactive molecular visualization of thermal conductivity. In M. C. Linn(Chair), Critique to learning science. Symposium conducted at the annual meeting of the National Association for Research in Science Teachingn, Garden Grove, CA.
Chang, H.-Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73-94.
Clark, D. B. (2006). Longitudinal conceptual change in students' understanding of thermal equilibrium: An examination of the process of conceptual restructuring. Cognition and Instruction, 24(4), 467-563.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ.: Lawrence Erlbaum Associates.
Coll, R. K., France, B., & Taylor, I. (2005). The role of models/and analogies in science education: implications from research. International Journal of Science Education, 27(2), 183-198.
Davies, P. (2000). Computerized peer assessment. Innovations in Education and Training International, 37(4), 346-355.
Davis, E. A. (2000). Scaffolding students' knowledge integration: prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837.
Ennis, R. H. (1996). Critical thinking. Upper Saddle River, N. J.: Prentice-Hall.
Ford, M. (2009). Critique and learning to construct scientific meaning. Paper presented at the National Association for Research in Science Teaching, Garden Grove, CA.
Gilbert, J. K. (1993). Models and Modeling in Science Education. Hatfield, UK: Association for Science Education.
Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Dordrecht, The Netherlands: Kluwer Academic Publisher.
Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79.
Goberta, J. D., O'Dwyerb, L., Horwitzc, P., Buckleyd, B. C., Levye, S. T., & Wilenskyf, U. (2011). Examining the relationship between students' understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653-684.
Greene, J. C., Caracelli, V. J., & Graham, W. F. (1989). Toward a conceptual framework for mixed-method evaluation designs. Educational Evaluation and Policy Analysis, 11, 255-274.
Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041.
Hestenes, D. (1995). Modeling software for learning and doing physics. In C. Bernardini, C. Tarsitani & M. Vincentini (Eds.), Thinking physics for teaching (pp. 25-66). New York: Plenum Press.
Johnson, B., & Christensen, L. (2008). Educational research : quantitative, qualitative, and mixed approaches (3rd ed.). Los Angeles: Sage Publications.
Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26.
Justi, R. S., & Driel, J. v. (2005). A case study of the development of a beginning chemistry teacher’s knowledge about models and modeling. Research in Science Education, 35(2-3), 197-219.
Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.
Lin, S. S. J., Liu, E. Z. F., & Yuan, S. M. (2001). Web-based peer assessment: feedback for students with various thinking-styles. Journal of Computer Assisted Learning, 17(4), 420-432.
Linn, M. C. (2006). The knowledge integration perspective on learning and instruction. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 243-264). New York: Cambridge University Press.
Linn, M. C., & Hsi, S. (2000). Computers, teachers, peers: Science learning partners. Mahwah, NJ: Lawrence Erlbaum Associates.
Mayfield, M. (1997). Thinking for yourself: Developing critical thinking skills through reading and writing. Belmont, CA: Wadsworth Publishing Company.
Nguyen, D. M., Hsieh, Y.-C., & Allen, G. D. (2006). The Impact of Web-Based Assessment and Practice on Students' Mathematics Learning Attitudes. Journal of Computers in Mathematics and Science Teaching, 25(3), 251-279
Paul, R., Binker, A. J., & Weil, D. (1987). Critical thinking handbook K-3. Rohnert Park, CA: Center for Critical Thinking and Moral Critique Sonoina State University.
Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486-511.
Rundell, M. (Ed.) (2002) Macmillan English Dictionary for Advanced Learners of American English. Oxford: Macmillan Education.
Saari, H., & Viiri, F. (2003). A research-based teaching sequence for teaching the concept of modeling to seventh-grade students. International Journal of Science Education, 25(11), 1333-1352.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Ache´r, A., Fortus, D., et al. (2009). Developing a Learning Progression for Scientific Modeling:Making Scientific Modeling Accessible and Meaningful for Learners. Journal of Research in Science Teaching, 46(6), 632-654.
Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205.
Sciences, N. A. o. (1996). National Science Education Standards. Washington, DC: National Academy Press.
Shen, J. (2010). Nurturing students’ critical knowledge using technology-enhanced scaffolding strategies in science education. Journal of Science Education and Technology, 19(1), 1-12.
Shen, J., & Confrey, J. (2010). Justifying Alternative Models in Learning Astronomy: A study of K–8 science teachers’ understanding of frames of reference. International Journal of Science Education, 32(1), 1-29.
Siegel, H. (1980). Critical thinking as an educational ideal. The Educational Forum, 45(1), 7-23.
Sinclair, J. (Ed.) (1997) Collins Cobuild English Dictionary. London, England: HarperCollins Publishers.
Solomon, J. (1987). New thoughts on teacher education. Oxford Review of Education, 13(3), 267-274.
Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Education, 28(9), 761-784.
Sternberg, R. J. (1994). Thinking styles: Theory and assessment at the interface between intelligence and personality. In R. J. Sterberg & P. Ruzgis (Eds.), Personality and Intelligence (pp. 169-187). New York: Cambridge University Press.
Taylor, I., Barker, M., & Jones, A. (2003). Promoting mental model building in astronomy education. International Journal of Science Education, 25, 1205–1225.
Toulmin, S. E. (1958). The uses of argument. Cambridge, England: Cambridge University Press.
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
Tsai, C.-C., Lin, S. S. J., & Yuan, S. M. (2002). Developing science activities through a networked peer assessment system. Computers & Education, 38, 241-252.
Tsai, C.-C., Liu, E. Z. F., Lin, S. S. J., & Yuan, S. M. (2001). A network peer assessment system based on a Vee heuristic. Innovations in Education and Training International, 38(3), 220-230.
Tseng, S.-C., & Tsai, C.-C. (2007). On-line peer assessment and the role of the peer feedback: A study of high school computer course. Computers & Education 49(4), 1161-1174.
Van Eemeren, F. H. (1995). A world of difference: The rich state of argumentation theory. Informal Logic, 17(2), 144-158.
Whire, B. Y. (1993). Thinker tools: causal models, conceptual change, and science education. Cognition & Instruction, 10(1), 1-100.
White, B. Y. (1993). Thinker tools: causal models, conceptual change, and science education. Cognition & Instruction, 10(1), 1-100.
Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821-842.
Xie, C. (2010). Molecular Workbenc (Version V3.0). Concord, Massachusetts: Concord Consortium, Inc.
Xie, Q., & Tinker, R. (2006). Molecular Dynamics Simulations of Chemical Reactions for Use in Education. Journal of Chemical Education, 83(1), 77-83.
Zhang, Z. (2010). Exploring Drawing and Critique to Enhance Learning from Visualizations. In Learning in the Disciplines. Proceedings of the 9th International Society of the Learning Sciences(Vol. 2, p.234), Chicago, USA: International Society of the Learning Sciences.
Zhang, Z., & Linn, M. C. (2008). Using drawings to support learning from dynamic visualizations. In International Perspectives in the Learning Sciences: Cre8ting a Learning World. Proceedings of the 8th International Conference of the Learning Sciences (Vol. 3, pp. 161-162). Utrecht, The Netherlands: International Society of the Learning Sciences, Inc.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top