跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 21:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉勝勛
研究生(外文):Sheng-Shiun Ye
論文名稱:磷化銦鎵/砷化鎵系列高電子遷移率電晶體之研究
論文名稱(外文):Investigation of InGaP/GaAs-Based High Electron Mobility Transistors
指導教授:蔡榮輝 
指導教授(外文):Jung-Hui Tsai
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
中文關鍵詞:磷化銦鎵砷化鎵高電子遷移率電晶體
外文關鍵詞:InGaPGaAsHigh Electron Mobility TransistorsHEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文以半導體模擬方式分析具有兩種單原子層摻雜與三種雙原子層摻雜分佈之磷化銦鎵/砷化鎵高電子遷移率場效電晶體,並分別進行比較。
首先,為了將載子有效的侷限在砷化鎵通道層中以減少閘極漏電流,採用了具有相當的導電帶不連續值磷化銦鎵/砷化鎵材料系統。且因閘極下方的磷化銦鎵層為大能隙且未摻雜,因而具有良好的蕭特基接觸,可得到大的閘極電壓操作範圍。
在兩種單原子層摻雜分佈的電晶體中,A元件及B元件分別為上、下層單原子層摻雜(n+ = 5 × 1012 cm-2)結構。模擬結果顯示,A元件與B元件之最大轉導值分別為164.28、107.4 mS/mm,最大汲極輸出電流分別為202、218.96 mA/mm,而閘極導通電壓分別可達1.04、1.09 V,臨界電壓分別為 -0.48、-2.044 V,輸出電導分別為1.116、0.789 mS/mm,單位電流增益截止頻率分別為12、6.5 GHz以及最大震盪頻率分別為45、17 GHz。值得注意的是,在低汲-源極電壓時所產生的曲膝效應。由於閘極空乏只發生在閘極金屬正下方區域,導致通道中對應閘極金屬的範圍,其二維電子氣濃度將比對應間隔區的範圍相對較低。因此,當載子在通道中傳輸時會面臨一個電位能障。然而,在大汲-源極電壓時,其區域電位能障下降,這將使載子從源極到汲極的傳輸變得容易,此時汲極電流將會迅速增加。
在三種雙重原子層摻雜分佈的電晶體中,其C元件為上、下層單原子摻雜濃度都是2.5 × 1012 cm-2的結構;D元件為上層單原子摻雜濃度1 × 1012 cm-2和下層單原子摻雜濃度4 × 1012 cm-2的結構;E元件為上層單原子摻雜濃度4 × 1012 cm-2和下層單原子摻雜濃度1 × 1012 cm-2的結構。模擬結果顯示,C元件、D元件和E元件之最大汲極飽和電流依序為268.589、279.277、283.188 mA/mm,臨界電壓依序為 -1.275、-1.736、-0.791 V,且最大轉導值依序為163、150.63、213.6 mS/mm。而電導值1.206、1.142、1.628 mS/mm,依序為閘極導通電壓依序為1.0487、1.063、1.042 V,單位電流增益截止頻率分別為9.5、8、12 GHz以及最大震盪頻率分別為42、25、55 GHz。此外,這些元件所顯示的優異特性,可應用於訊號放大器及高頻微波電路中。

In this thesis, we analyze and compare the characteristics of the two kind of InGaP/GaAs single delta-doped HEMTs and the three kind of InGaP/GaAs double delta-doped HEMTs.
Due to the considerable conductance-band discontinuity at InGaP/GaAs heterojunction, it can provide good carrier confinement in the channel layers and reduce gate leakage currents. In addition, because the gate barrier layer is undoped and large band gap, it has good Schottky characteristics to enhance the gate turn-on voltage and extend the gate operation region. In order to further increase the breakdown voltage and reduce leakage current, the delta-doped carriers supplied layer below the undoped gate layer is employed in the studied HEMTs.
Simulated results exhibit that the gate turn-on voltage up to 1.04 (1.09) V, the output conductance is 1.116 (0.789) mS/mm, the extrinsic transconductance is 164.28 (107.4) mS/mm, the maximum saturation output current density approximates 202 (218.96) mA/mm, the threshold voltage is -0.48 (-2.044) V, the unity current gain cut-off frequency is 12 (6.5) GHz, and maximum oscillation frequency is 45 (17) GHz for the single delta-doped HEMT with upper (lower) delta-doped sheet. Clearly, the lower delta-doped structure has higher gate turn-on voltage, lower conductance, higher saturation output current, larger magnitude of threshold voltage, and wider gate operation region. But, it has relatively lower transconductance and worse high-frequency characteristics. Furthermore, it is worthy to note that a considerable knee effect is observed at low drain-to-source voltage. There is a higher 2DEG concentration in the two spacer region than the gate region because the gate depletion only occurs below the gate metal. Thus, the carrier transportation along the 2DEG channel will face a potential barrier in the region below the gate metal at relatively small drain-to-source voltage. However, at large drain-to-source voltage the potential barrier is lower and the carriers easily transport along 2DEG channel from source to drain region. In this condition, the drain current will rapidly increase.
As considering the double delta-doped HEMTs, the top and bottom delta-doped concentrations are of 2.5 × 1012 and 2.5 × 1012 cm-2 for the device C, respectively. Similar to the device C, the concentrations of top and bottom delta-doped supplied layers are of 1 × 1012 (4 × 1012) cm-2 and 4 × 1012 (1 × 1012) cm-2, for the device D (device E). The simulation results show the gate turn-on voltages up to 1.0487, 1.063, and 1.0424 V for the devices C, D, and E, respectively. The next simulation results show the conductance are of 1.206, 1.142, 1.628 mS/mm for the devices C, D, and E, respectively. The next simulation results show the extrinsic transconductance of 163, 150.63, and 213.6 mS/mm for the devices C, D, and E, respectively. The next simulation results show the maximum saturation current densities of devices C, D, E are 268.589, 279.277, and 283.188 mA/mm, respectively. The next simulation results show the threshold voltages are of -1.275, -1.736, and -0.791 V for the devices C, D, and E, respectively. The next simulation results show the ft (fmax) are 9.5 (42), 8 (25), and 12 (55) GHz for the devices C, D, and E, respectively. Obviously, the device E has the highest saturation output current, the largest transconductance, and the best frequency characteristics. However, it has the lowest gate turn-on voltage, the largest conductance, the smallest magnitude threshold voltage, and the narrowest gate operation region. These characteristics associated with delta-doped concentration vary. Furthermore, we can observe from these data that the double delta-doped supplied layers structure can more effectively improve the output saturation current, transconductance and frequency characteristics. The excellent device performance provides a promise for signal amplifiers, high speed, high power, and microwave circuit applications.

Abstract (Chinese)
Abstract (English)
Chapter 1. Introduction……………………………….1

Chapter 2. Performance of InGaP/GaAs Single Delta-Doped High Electron Mobility Transistors
2-1. Introduction …………………………………4
2-2. Device Structures ……………………………5
2-3. Results and Discussion ..………………………6
2-4. Conclusions …..............................................12

Chapter 3. Performance of InGaP/GaAs Double Delta-Doped High Electron Mobility Transistors
3-1. Introduction ……………………………….….14
3-2. Device Structures ………………………….…15
3-3. Results and Discussion .…………………........16
3-4. Conclusions .………………………………….19
Chapter 4. Conclusion and Prospect
4-1. Conclusion ………………….…………………..20
4-2. Prospect …………………..….……….……….22
References ……………………………………………… ……….24
Tables
Figures

Table Lists
Table I Simulated results of the single delta-doped HEMTs.
Table II Simulated results of the double delta-doped HEMTs.

Figure Captions
Figure 2-1 The schematic cross section of the device A with upper
delta-doped sheet.
Figure 2-2 The schematic cross section of the device B with lower
delta-doped sheet.
Figure 2-3 (a) Corresponding energy-band diagrams of the device A at
equilibrium.
Figure 2-3 (b) The energy band diagrams along 2DEG channel from
source to drain region at equilibrium of the device A.
Figure 2-3 (c) The energy band diagrams along 2DEG channel from
source to drain region at VDS = 0.75 V of the device A.
Figure 2-4 Simulated electronic distribution of the device A at
equilibrium.
Figure 2-5 The simulated gate-to-drain current-voltage characteristic of
the device A.
Figure 2-6 Simulated drain-to-source current-voltage characteristics of
the device A. The controlled gate voltage is applied by +0.5
V/step.
Figure 2-7 Simulated drain-to-source saturation current and
transconductance versus the gate bias for the device A.
The drain-to-source voltage is fixed at +6 V.
Figure 2-8 Simulated output conductance versus the drain bias for the
device A. The gate-to-source voltage is fixed at +0.5 V.
Figure 2-9 Microwave performance of the device A.
Figure 2-10 Corresponding energy-band diagrams of device B at
equilibrium.
Figure 2-11 Simulated electron distribution of the device B at
equilibrium.
Figure 2-12 The simulated gate-to-drain current-voltage characteristic
of the device B.
Figure 2-13 Simulated drain-to-source current-voltage characteristics
of the device B. The controlled gate voltage is applied by
+0.5 V/step.
Figure 2-14 Simulated drain-to-source saturation current and
transconductance versus the gate bias for the device B.
The drain-to-source voltage is fixed at +6 V.
Figure 2-15 Simulated output conductance versus the drain bias for the
device B. The gate-to-source voltage is fixed at +0.5 V.
Figure 2-16 Microwave performance of the device B.
Figure 3-1 (a) Schematic cross section of the device C with double
delta-doped sheets. The top and bottom delta-doped
concentrations are of 2.5 × 1012 and 2.5 × 1012 cm-2,
respectively.
Figure 3-1 (b) Schematic cross section of the device D with double
delta-doped sheets. The top and bottom delta-doped
concentrations are of 1 × 1012 and 4 × 1012 cm-2,
respectively.
Figure 3-1 (c) Schematic cross section of the device E with double
delta-doped sheets. The top and bottom delta-doped
concentrations are of 4 × 1012 and 1 × 1012 cm-2,
respectively.
Figure 3-2 (a) Corresponding energy-band diagrams of the device C at
equilibrium.
Figure 3-2 (b) Corresponding energy-band diagrams of the device D at
equilibrium.
Figure 3-2 (c) Corresponding energy-band diagrams of the device E at
equilibrium.
Figure 3-3 (a) Simulated electron distribution of the device C at
equilibrium.
Figure 3-3 (b) Simulated electron distribution of the device D at
equilibrium.
Figure 3-3 (c) Simulated electron distribution of the device E at
equilibrium.
Figure 3-4 (a) The simulated gate-to-drain current-voltage characteristic
of the device C.
Figure 3-4 (b) The simulated gate-to-drain current-voltage characteristic
of the device D.
Figure 3-4 (c) The simulated gate-to-drain current-voltage characteristic
of the device E.
Figure 3-5 (a) Simulated drain-to-source current-voltage characteristics
of the device C. The controlled gate voltage is applied by
+0.5 V/step.
Figure 3-5 (b) Simulated drain-to-source current-voltage characteristics
of the device D. The controlled gate voltage is applied by
+0.5 V/step.
Figure 3-5 (c) Simulated drain-to-source current-voltage characteristics
of the device E. The controlled gate voltage is applied by
+0.5 V/step.
Figure 3-6 (a) Simulated drain-to-source saturation current and
transconductance versus the gate bias for the device C.
The drain-to-source voltage is fixed at +6 V.
Figure 3-6 (b) Simulated drain-to-source saturation current and
transconductance versus the gate bias for the device
D. The drain-to-source voltage is fixed at +6 V.
Figure 3-6 (c) Simulated drain-to-source saturation current and
transconductance versus the gate bias for the device E.
The drain-to-source voltage is fixed at +6 V.
Figure 3-7 (a) Simulated output conductance versus the drain bias for the
device C. The gate-to-source voltage is fixed at +0.5 V.
Figure 3-7 (b) Simulated output conductance versus the drain bias for the
device D. The gate-to-source voltage is fixed at +0.5 V.
Figure 3-7 (c) Simulated output conductance versus the drain bias for the
device E. The gate-to-source voltage is fixed at +0.5 V.
Figure 3-8 (a) Microwave performance of the device C.
Figure 3-8 (b) Microwave performance of the device D.
Figure 3-8 (c) Microwave performance of the device E.

[1] T. Suemitsu, T. Ishii, H. Yokoyama, T. Enoki, Y. Ishii, and T. Tamamura, “30-nm gate InP-based lattice-matched high electron mobility transistors with 350GHz cutoff frequency,” Jpn. J. Appl. Phys, Vol. 38, No. 2B, pp. 154-156, 1999.

[2] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, “30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs,” IEEE Trans. Electron Devices, Vol. 49, No. 10, pp. 1694-1700, 2002.

[3] K. J. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High-performance InP-based enhancement-mode HEMTs using non-alloyed ohmic contacts and Pt-based buried-gate technologies,” IEEE Trans. Electron Devices, Vol. 43, No. 2, pp. 252-257, 1996.

[4] K. Kajii, Y. Watanabe, M. Suzuki, I. Hanyu, M. Kosugi, K. Odani, T. Mimura, and M. Abe, “A 40-ps high-electron mobility transistor 4.1 k gate array,” Electronics J. Solid-State Circuits, Vol. 23, pp. 485-489, 1998.

[5] J. H. Tsai, “InGaP/GaAs camel-gate field effect transistor with double δ-doping channel profile,” Materials Chemistry and Physics, Vol. 73, No. 2-3, pp. 170-173, 2002. 

[6] M. K. Tsai, S. W. Tan, Y. W. Wu, W. S. Lour, and Y. J. Yang, “Depletion-mode and enhancement-mode InGaP/GaAs δ-HEMTs for low supply-voltage applications,” Semicond. Sci. Technol., Vol. 17, No. 2, pp. 156-160, 2002.

[7] J. H. Tsai and K. P. Zhu, “Electrical properties of single delta-doped InGaP/InGaAs/GaAs pseudomorphic HEMT with camel-like gate structure,” Materials Chemistry and Physics, Vol. 82, No. 3, pp. 501-504, 2003.

[8] J. H. Tsai and C. M. Li, “Characteristics of InGaP/InGaAs complementary pseudomorphic doped-channel HFETs,” Solid-State Electron., Vol. 52, No. 1, pp. 146-149 ,2008.

[9] W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., Vol. 20, No.11, pp. 548-550, 1999.

[10] Y. Zhang and J. Singh, “Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor,” J. Applied Phys, Vol. 85, No. 1 , pp. 587-594, 1999.

[11] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostrctures,” J. Applied Phys, Vol. 87, No 1, pp. 334-344, 2000.

[12] K. H. Yu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, C. Z. Wu, and W. C. Liu, “InGaP/GaAs camel-like field-effect transistor for high-breakdown and high-temperature applications,” IEEE Electron Device Lett., Vol. 36, No. 22, pp. 1886-1888, 2000.

[13] J. H. Tsai, S. Y. Chiu, W. S. Lour, D. F. Guo, and W. C. Liu, “Application of double camel-like gate structures for GaAs field-effect transistor with extremely high potential barrier height and gate turn-on voltage,” Semiconductor Science and Technology, Vol. 21, No. 8, pp.1132-1138, 2006.

[14] Y. S. Lin, T. P. Sun, and S. S. Lu, “Ga0.51In0.49P/In0.15Ga0.85As/GaAs pseudomorphic doped-channel FET with high-current density and high-breakdown voltage,” IEEE Electron Device Lett., Vol. 18, No. 4, pp. 150-153, 1997.

[15] K. H. Yu, W. L. Chang, S. C. Feng and W. C. Liu, “Characteristics of GaAs/InGaP/GaAs doped channel camel-gate field-effect Transistor,” Solid-State Electron, Vol. 44, pp. 2069-2075, 2000.

[16] H. M. Shieh, W. C. Hsu, R. T. Hsu, C. L. Wu, and T. S. Wu, “A high-performance δ-doped GaAs/InxGa1-xAs pseudomorphic high electron mobility transistor utilizing a graded InxGa1-xAs channel,” IEEE Trans. Electron Device, Vol. 14, No. 12, pp. 581-583, 1993.

[17] C. Tedesco, E. Zanoni, C. Canali, S. Bigliardi, M. Manfredi, D. C. Streit, and W. T. Anderson, “Impact ionization and light emission in high power pseudomorphic AlGaAs/InGaAs HEMT’s,” IEEE Trans. Electron Devices, Vol. 40, pp. 1211–1214, 1993.

[18] J. H. Tsai, “High-performance AlInAs/GaInAs δ-doped HEMT with negative differential resistance switch for logic application,” Solid-State Electron., Vol. 48, No. 1, pp. 81-85, 2004.

[19] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu, and W. C. Liu, “Pd-Oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor,” IEEE Sensors Journal, Vol. 6, No. 2, pp. 287-292, 2006.

[20] W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, Vol. 48, No. 7, pp. 1290-1296, 2001.

[21] Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High breakdown characteristic δ-doped InGaP/InGaAs/AlGaAs tunneling real-space transfer HEMT,” IEEE Trans. Electron Device, Vol. 49, No. 2, pp. 221-225, 2002.

[22] L. H. Chu, E. Y. Chang, S. H. Chen, Y. C. Lien, and C. Y. Chang, “2V-operated InGaP–AlGaAs–InGaAs enhancement-mode pseudomorphic HEMT,” IEEE Electron Device Lett., Vol. 26, No. 2, pp. 53-55, 2005.

[23] K. H. Yu, H. M. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP–InGaAs–GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Tran. Electron Devices, Vol. 49, No. 10, pp. 1687-1693, 2002.

[24] J. H. Tsai, K. P. Zhu, S. Y. Chiu, and Y. C. Chu, “High performances of InGaP/InGaAs/GaAs pseudomorphic modulation-doped field effect transistors using camel-gate structure,” Journal of Vacuum Science and Technology B, Vol. 22, No. 5, pp. 2314-2318, 2004.

[25] J. H. Tsai, “A novel GaAs field-effect transistor with double camel-like gate structure,” IEEE Electron Device Lett., Vol. 26, No. 7, pp. 429-431, 2005.

[26] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double δ-doped pHEMT with camel-like gate structure,” IEEE Electron Device Lett., Vol. 24, No. 1, pp. 1-3, 2003.

[27] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., Vol. 20, No. 6, pp. 274-276, 1999.

[28] L. Y. Chen, S. Y. Cheng, Member, IEEE, T. P. Chen, K. Y. Chu, T. H. Tsai, Y. C. Liu, X. D. Liao, and W. C. Liu, “On an InGaP/InGaAs double channel pseudomorphic high electron mobility transistor with graded triple δ-doped sheets,” IEEE Trans. Electron Devices, Vol. 55, No. 11, pp. 3310-3313, 2008.

[29] W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in LP-MOCVD grown n+-GaAs/δ(p+)-GaInP/n-GaAs heterojunction camel-gate FET,” IEEE Electron Lett., Vol. 34, pp. 814–815, 1998.

[30] M. J. Kao, H. M. Shieh, W. C. Hsu, T. Y. Lin, Y. H. Wu, and R.T. Hsu, “Investigation of the electron transfer characteristics in multi-delta-doped GaAs FET’s,” IEEE Trans. Electron Devices, Vol.43, pp. 1181–1186, 1996.

[31] C. Lien, Y. Huang, H. Chien, and W. Wang, “Charge control model of the double delta-doped quantum-well field-effect transistor,” IEEE Trans. Electron Devices, Vol. 41, pp. 1351–1356, 1994.

[32] W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/δ-(p+)-GaInP/n-GaAs high breakdown voltage field effect transistor,” Semicond. Sci. Technol., Vol. 14, pp. 307–311, 1999.

[33] F. Principato, A. Caddemi, and G. Ferrante, “Experimental investigation of the kink effect and the low frequency noise properties in HEMT’s,” Solid-State Electron.,Vol. 49, No.6, pp. 915-922, 2005.

[34] C. Y. Chang, H. T. Hsu, E. Y. Chang, C. I. Kuo, S. Datta, M. Radosavljevic, and Y. Miyamoto, “Investigation of impact ionization in InAs-channel HEMT for high-speed and low-power applications,” IEEE Electron Device Lett., Vol. 28, No. 10, pp. 856-858, 2007.

[35] J. H. Tsai, C. M. Li, W. C. Liu, D. F. Guo, S. Y. Chiu, and W. S. Lour, “Integration of n- and p-channel InGaP/InGaAs doped-channel pseudomorphic HFETs,” Electron. Lett., Vol. 43, No. 13, pp. 732-734, 2007.

[36] W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., Vol. 67, No. 18, pp. 2636-2638, 1996.

[37] J. H. Tsai, J. S. Chen, and Y. J. Chu, “Design consideration of δ-doping channels for high-performance n+-GaAs/p+-InGaP/n-GaAs camel-gate field effect transistors,” Superlattices and Microstructures, Vol. 37, No. 1, pp. 9-17, 2005.
[38] H. C. Chiu, S. C. Yang, Y. J. Chan, and J. M. Kuo, “High schottky barrier Al0.5In0.5P/InGaAs doped-channel HFETs with superior microwave power performance,” IEEE Electron Device Lett., Vol. 36, No. 23, pp. 1968-1969, 2000.

[39] A. Mahajan, P. Fay, M. Arafa, and I. Adesida, “ Integration of InAlAs/InGaAs/ InP enhancement- and depletion-mode high electron mobility transistors for high-speed circuit applications,” IEEE Trans. Electron Devices, Vol. 45, No. 1, pp. 338-340, 1998.

[40] J. P. Ao, Q. M. Zeng, Y. L. Zhao, X. J. Li, W. J. Liu, S. Y. liu and C. G. Liang, “InP-Based enhancement-Mode pseudomorphic HEMT with strained lno.45Alo.55As barrier and In0.75Ga0.25As channel layers,” IEEE Electron Device Lett., Vol. 21, pp. 200-202, 2000.

[41] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, Vol. 50, No. 8, pp. 1717-1723, 2003.

[42] R. T. Hsu, W. C. Hsu, M. J. Kao, and J. S. Wang, “Characteristics of a δ ‐doped GaAs/InGaAs p‐channel heterostructure field‐effect transistor,” Appl. Phys. Lett., Vol. 66, pp. 2864~2866, 1995.

[43] S. C. Yang, H. C. Chiu, Y. J. Chan, H. H. Lin, and J. M. Kuo, “(AlxGa1-x)0.5In0.5P/In0.15Ga0.85As (x = 0, 0.3, 1.0) heterostructure doped-channel FETs for microwave power applications,” IEEE Trans. Electron Devices, Vol. 48, No. 12, pp. 2906-2910, 2002.

[44] S. C. Yang, H. C. Chin, F. T. Chien, Y. J. Chan, and J.-M., “RIE gate-recessed (Al0.3Ga0.7)0.5In0.5P/InGaAs double doped-channel FETs using CHF3+BCl3 mixing plasma,” IEEE Electron Device Lett., Vol. 22, No. 4, pp. 170-173, 2001.
[45] J. P. Mazellier, J. Widiez, F. Andrieu, M. Lions, S. Saada, M. Hasegawa, K. Tsugawa, L. Brevard, J. Dechamp, M. Rabarot, V. Delaye, S. Cristoloveanu, L. Clavelier, S. Deleonibus, P. Bergonzo, and O. Faynot, “First demonstration of heat dissipation improvement in CMOS technology using silicon-on-diamond (SOD) substrates,” 2009 IEEE International SOI Conference, pp. 1-2, 2009.

[46] B. Edholm, L. Vestling, M. Bergh, S. Tiensuu, and A. Soderbarg, “Silicon-on-diamond MOS-transistors with thermally grown gate oxide,” 1997 IEEE International SOI Conference, pp. 30-31, 1997.

[47] A. Soderbarg, B. Edholm, and S. Bengtsson, “Evaluation of silicon device processes aimed for silicon-on-diamond material,” 2002 IEEE International SOI Conference, pp. 104-105, 2002.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top