|
[1] T. Suemitsu, T. Ishii, H. Yokoyama, T. Enoki, Y. Ishii, and T. Tamamura, “30-nm gate InP-based lattice-matched high electron mobility transistors with 350GHz cutoff frequency,” Jpn. J. Appl. Phys, Vol. 38, No. 2B, pp. 154-156, 1999.
[2] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, “30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs,” IEEE Trans. Electron Devices, Vol. 49, No. 10, pp. 1694-1700, 2002.
[3] K. J. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High-performance InP-based enhancement-mode HEMTs using non-alloyed ohmic contacts and Pt-based buried-gate technologies,” IEEE Trans. Electron Devices, Vol. 43, No. 2, pp. 252-257, 1996.
[4] K. Kajii, Y. Watanabe, M. Suzuki, I. Hanyu, M. Kosugi, K. Odani, T. Mimura, and M. Abe, “A 40-ps high-electron mobility transistor 4.1 k gate array,” Electronics J. Solid-State Circuits, Vol. 23, pp. 485-489, 1998.
[5] J. H. Tsai, “InGaP/GaAs camel-gate field effect transistor with double δ-doping channel profile,” Materials Chemistry and Physics, Vol. 73, No. 2-3, pp. 170-173, 2002.
[6] M. K. Tsai, S. W. Tan, Y. W. Wu, W. S. Lour, and Y. J. Yang, “Depletion-mode and enhancement-mode InGaP/GaAs δ-HEMTs for low supply-voltage applications,” Semicond. Sci. Technol., Vol. 17, No. 2, pp. 156-160, 2002.
[7] J. H. Tsai and K. P. Zhu, “Electrical properties of single delta-doped InGaP/InGaAs/GaAs pseudomorphic HEMT with camel-like gate structure,” Materials Chemistry and Physics, Vol. 82, No. 3, pp. 501-504, 2003.
[8] J. H. Tsai and C. M. Li, “Characteristics of InGaP/InGaAs complementary pseudomorphic doped-channel HFETs,” Solid-State Electron., Vol. 52, No. 1, pp. 146-149 ,2008.
[9] W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., Vol. 20, No.11, pp. 548-550, 1999.
[10] Y. Zhang and J. Singh, “Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor,” J. Applied Phys, Vol. 85, No. 1 , pp. 587-594, 1999.
[11] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostrctures,” J. Applied Phys, Vol. 87, No 1, pp. 334-344, 2000.
[12] K. H. Yu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, C. Z. Wu, and W. C. Liu, “InGaP/GaAs camel-like field-effect transistor for high-breakdown and high-temperature applications,” IEEE Electron Device Lett., Vol. 36, No. 22, pp. 1886-1888, 2000.
[13] J. H. Tsai, S. Y. Chiu, W. S. Lour, D. F. Guo, and W. C. Liu, “Application of double camel-like gate structures for GaAs field-effect transistor with extremely high potential barrier height and gate turn-on voltage,” Semiconductor Science and Technology, Vol. 21, No. 8, pp.1132-1138, 2006.
[14] Y. S. Lin, T. P. Sun, and S. S. Lu, “Ga0.51In0.49P/In0.15Ga0.85As/GaAs pseudomorphic doped-channel FET with high-current density and high-breakdown voltage,” IEEE Electron Device Lett., Vol. 18, No. 4, pp. 150-153, 1997.
[15] K. H. Yu, W. L. Chang, S. C. Feng and W. C. Liu, “Characteristics of GaAs/InGaP/GaAs doped channel camel-gate field-effect Transistor,” Solid-State Electron, Vol. 44, pp. 2069-2075, 2000.
[16] H. M. Shieh, W. C. Hsu, R. T. Hsu, C. L. Wu, and T. S. Wu, “A high-performance δ-doped GaAs/InxGa1-xAs pseudomorphic high electron mobility transistor utilizing a graded InxGa1-xAs channel,” IEEE Trans. Electron Device, Vol. 14, No. 12, pp. 581-583, 1993.
[17] C. Tedesco, E. Zanoni, C. Canali, S. Bigliardi, M. Manfredi, D. C. Streit, and W. T. Anderson, “Impact ionization and light emission in high power pseudomorphic AlGaAs/InGaAs HEMT’s,” IEEE Trans. Electron Devices, Vol. 40, pp. 1211–1214, 1993.
[18] J. H. Tsai, “High-performance AlInAs/GaInAs δ-doped HEMT with negative differential resistance switch for logic application,” Solid-State Electron., Vol. 48, No. 1, pp. 81-85, 2004.
[19] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu, and W. C. Liu, “Pd-Oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor,” IEEE Sensors Journal, Vol. 6, No. 2, pp. 287-292, 2006.
[20] W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, Vol. 48, No. 7, pp. 1290-1296, 2001.
[21] Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High breakdown characteristic δ-doped InGaP/InGaAs/AlGaAs tunneling real-space transfer HEMT,” IEEE Trans. Electron Device, Vol. 49, No. 2, pp. 221-225, 2002.
[22] L. H. Chu, E. Y. Chang, S. H. Chen, Y. C. Lien, and C. Y. Chang, “2V-operated InGaP–AlGaAs–InGaAs enhancement-mode pseudomorphic HEMT,” IEEE Electron Device Lett., Vol. 26, No. 2, pp. 53-55, 2005.
[23] K. H. Yu, H. M. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP–InGaAs–GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Tran. Electron Devices, Vol. 49, No. 10, pp. 1687-1693, 2002.
[24] J. H. Tsai, K. P. Zhu, S. Y. Chiu, and Y. C. Chu, “High performances of InGaP/InGaAs/GaAs pseudomorphic modulation-doped field effect transistors using camel-gate structure,” Journal of Vacuum Science and Technology B, Vol. 22, No. 5, pp. 2314-2318, 2004.
[25] J. H. Tsai, “A novel GaAs field-effect transistor with double camel-like gate structure,” IEEE Electron Device Lett., Vol. 26, No. 7, pp. 429-431, 2005.
[26] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double δ-doped pHEMT with camel-like gate structure,” IEEE Electron Device Lett., Vol. 24, No. 1, pp. 1-3, 2003.
[27] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., Vol. 20, No. 6, pp. 274-276, 1999.
[28] L. Y. Chen, S. Y. Cheng, Member, IEEE, T. P. Chen, K. Y. Chu, T. H. Tsai, Y. C. Liu, X. D. Liao, and W. C. Liu, “On an InGaP/InGaAs double channel pseudomorphic high electron mobility transistor with graded triple δ-doped sheets,” IEEE Trans. Electron Devices, Vol. 55, No. 11, pp. 3310-3313, 2008.
[29] W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in LP-MOCVD grown n+-GaAs/δ(p+)-GaInP/n-GaAs heterojunction camel-gate FET,” IEEE Electron Lett., Vol. 34, pp. 814–815, 1998.
[30] M. J. Kao, H. M. Shieh, W. C. Hsu, T. Y. Lin, Y. H. Wu, and R.T. Hsu, “Investigation of the electron transfer characteristics in multi-delta-doped GaAs FET’s,” IEEE Trans. Electron Devices, Vol.43, pp. 1181–1186, 1996.
[31] C. Lien, Y. Huang, H. Chien, and W. Wang, “Charge control model of the double delta-doped quantum-well field-effect transistor,” IEEE Trans. Electron Devices, Vol. 41, pp. 1351–1356, 1994.
[32] W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/δ-(p+)-GaInP/n-GaAs high breakdown voltage field effect transistor,” Semicond. Sci. Technol., Vol. 14, pp. 307–311, 1999.
[33] F. Principato, A. Caddemi, and G. Ferrante, “Experimental investigation of the kink effect and the low frequency noise properties in HEMT’s,” Solid-State Electron.,Vol. 49, No.6, pp. 915-922, 2005.
[34] C. Y. Chang, H. T. Hsu, E. Y. Chang, C. I. Kuo, S. Datta, M. Radosavljevic, and Y. Miyamoto, “Investigation of impact ionization in InAs-channel HEMT for high-speed and low-power applications,” IEEE Electron Device Lett., Vol. 28, No. 10, pp. 856-858, 2007.
[35] J. H. Tsai, C. M. Li, W. C. Liu, D. F. Guo, S. Y. Chiu, and W. S. Lour, “Integration of n- and p-channel InGaP/InGaAs doped-channel pseudomorphic HFETs,” Electron. Lett., Vol. 43, No. 13, pp. 732-734, 2007.
[36] W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., Vol. 67, No. 18, pp. 2636-2638, 1996.
[37] J. H. Tsai, J. S. Chen, and Y. J. Chu, “Design consideration of δ-doping channels for high-performance n+-GaAs/p+-InGaP/n-GaAs camel-gate field effect transistors,” Superlattices and Microstructures, Vol. 37, No. 1, pp. 9-17, 2005. [38] H. C. Chiu, S. C. Yang, Y. J. Chan, and J. M. Kuo, “High schottky barrier Al0.5In0.5P/InGaAs doped-channel HFETs with superior microwave power performance,” IEEE Electron Device Lett., Vol. 36, No. 23, pp. 1968-1969, 2000.
[39] A. Mahajan, P. Fay, M. Arafa, and I. Adesida, “ Integration of InAlAs/InGaAs/ InP enhancement- and depletion-mode high electron mobility transistors for high-speed circuit applications,” IEEE Trans. Electron Devices, Vol. 45, No. 1, pp. 338-340, 1998.
[40] J. P. Ao, Q. M. Zeng, Y. L. Zhao, X. J. Li, W. J. Liu, S. Y. liu and C. G. Liang, “InP-Based enhancement-Mode pseudomorphic HEMT with strained lno.45Alo.55As barrier and In0.75Ga0.25As channel layers,” IEEE Electron Device Lett., Vol. 21, pp. 200-202, 2000.
[41] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, Vol. 50, No. 8, pp. 1717-1723, 2003.
[42] R. T. Hsu, W. C. Hsu, M. J. Kao, and J. S. Wang, “Characteristics of a δ ‐doped GaAs/InGaAs p‐channel heterostructure field‐effect transistor,” Appl. Phys. Lett., Vol. 66, pp. 2864~2866, 1995.
[43] S. C. Yang, H. C. Chiu, Y. J. Chan, H. H. Lin, and J. M. Kuo, “(AlxGa1-x)0.5In0.5P/In0.15Ga0.85As (x = 0, 0.3, 1.0) heterostructure doped-channel FETs for microwave power applications,” IEEE Trans. Electron Devices, Vol. 48, No. 12, pp. 2906-2910, 2002.
[44] S. C. Yang, H. C. Chin, F. T. Chien, Y. J. Chan, and J.-M., “RIE gate-recessed (Al0.3Ga0.7)0.5In0.5P/InGaAs double doped-channel FETs using CHF3+BCl3 mixing plasma,” IEEE Electron Device Lett., Vol. 22, No. 4, pp. 170-173, 2001. [45] J. P. Mazellier, J. Widiez, F. Andrieu, M. Lions, S. Saada, M. Hasegawa, K. Tsugawa, L. Brevard, J. Dechamp, M. Rabarot, V. Delaye, S. Cristoloveanu, L. Clavelier, S. Deleonibus, P. Bergonzo, and O. Faynot, “First demonstration of heat dissipation improvement in CMOS technology using silicon-on-diamond (SOD) substrates,” 2009 IEEE International SOI Conference, pp. 1-2, 2009.
[46] B. Edholm, L. Vestling, M. Bergh, S. Tiensuu, and A. Soderbarg, “Silicon-on-diamond MOS-transistors with thermally grown gate oxide,” 1997 IEEE International SOI Conference, pp. 30-31, 1997.
[47] A. Soderbarg, B. Edholm, and S. Bengtsson, “Evaluation of silicon device processes aimed for silicon-on-diamond material,” 2002 IEEE International SOI Conference, pp. 104-105, 2002.
|