跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 18:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡皓袁
研究生(外文):Hao-Yuan Tsai
論文名稱:以科技接受模式探討正妹報時器之使用行為意圖
論文名稱(外文):Exploring Users' Behavior Intention of Lovely Time: Based on Technology Acceptance ModelAcceptance Model
指導教授:朱素玥朱素玥引用關係
學位類別:碩士
校院名稱:國立屏東商業技術學院
系所名稱:行銷與流通管理系(所)
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:117
中文關鍵詞:系統特質科技接受模式網路外部性個別差異
外文關鍵詞:Network ExternalitiesSystem CharacteristicsTechnology Acceptance ModelIndividual Differences
相關次數:
  • 被引用被引用:4
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近年來網路上出現許多創新的商業模式,其中,正妹報時器由於結合素人正妹與報時的概念,並且強調每一分鐘都會有不同的正妹為使用者報時而備受注目。正妹報時器現行的經營模式為網路版本免費,而下載手機版本則需付費0.99美元,對於正妹報時器的業者而言,其願意提供網路免費版本是考量到未來手機付費下載的商機,因此,了解使用者對於正妹報時器的態度、使用意圖及未來是否願意繼續付費使用手機版本是重要的。
本研究以系統特質、網路外部性、個別差異與科技接受模式為基礎,建立正妹報時器使用者之使用行為模式,來探討正妹報時器使用者的行為意圖,並嘗試進一步預測未來手機付費下載的可能性。本研究首先依據文獻建立研究模式,並提出研究假說,其次採用問卷方式調查正妹報時器使用者,並取得有效樣本678份,再運用結構方程式(SEM)驗證模式之配適度及研究假說。
研究結果發現:(1)本研究之模式具合理適配度;(2)知覺有用性和知覺易用性對態度有正向顯著的影響、態度正向顯著影響行為意圖、行為意圖也會正向顯著影響付費持續使用行為意圖、同時知覺易用性對知覺有用性有正向顯著的影響;(3)移動性、相容性、便利性、知覺使用人數、個人創新性、自我效能、知覺娛樂性與先前經驗對知覺有用性有正向顯著的影響;(4)相容性、便利性、知覺使用人數、個人創新性、自我效能、知覺娛樂性與先前經驗也會正向顯著影響知覺易用性;(5)只有移動性對知覺易用性未達顯著影響。最後,則根據研究結果提出具體的理論與實務意涵,和後續研究建議。
In recent years, there were many innovative business models appears on the Internet. Among those, the “Lovely Time” become well known due to that was combined with beautiful girls and timer to become a timekeeping and emphasized there will have a different beautiful girl for users to timekeeping. The business model for the network version of "Lovely Time" was free, but the download version for cell phone was need to pay $ 0.99. The company which willing to provide free internet version is consider to “need to pay to downloaded” was the business opportunities in the future. Therefore, understanding the user’s attitude, intentions and continuance behavioral intention for the "Lovely Time" in the future to pay for cell phone download version of the impact is important.
This research is establish the behavior pattern for the "Lovely Time" user which based on the system characteristics, network externalities, individual differences and technology acceptance model, and then to explore the behavior intention of "Lovely Time" user. And try to predict "use cell phone to pay to download" in the further. It establish research model which based on literature. And proposed research hypotheses, to use Investigation by questionnaires "Lovely Time" users and received 678 effective samples, and then use structural equation modeling (SEM) verified the fit model and research hypotheses.
The results showed:
(1) The goodness of fit of the model was reasonable.
(2) Perceived usefulness and perceived ease of use will positively affect attitude, attitude will positively affect behavioral intention, behavioral intention will positively affect continuance behavioral intention, perceived ease of use will positively affect perceived usefulness.
(3) Mobility, compatibility, convenience, perceived number of users, personal innovativeness, self-efficacy, perceived playfulness, previous experience will positively affect perceived usefulness.
(4) Compatibility, convenience, perceived number of users, personal innovativeness, self-efficacy, perceived playfulness, previous experience will positively affect perceived ease of use.
(5) Only the mobility of less than significant impact on perceived ease of use.
Finally, the concrete based on the results of the theoretical and practical implications, and Following research suggestion.
摘 要....................................................i
Abstract.................................................ii
謝 誌..................................................iii
目 錄...................................................iv
表目錄...................................................vi
圖目錄.................................................viii
第一章 緒論..............................................1
  第一節 研究背景與動機................................1
  第二節 研究目的與問題................................8
  第三節 研究流程......................................9
第二章 文獻探討.........................................10
  第一節 正妹報時器...................................10
  第二節 科技接受模式.................................12
  第三節 系統特質.....................................20
  第四節 網路外部性...................................26
  第五節 個別差異.....................................30
第三章 研究方法.........................................38
  第一節 研究架構與假說...............................38
  第二節 研究變數之操作性定義.........................45
  第三節 問卷設計.....................................50
  第四節 抽樣設計.....................................59
  第五節 資料分析方法.................................60
第四章 資料分析.........................................65
  第一節 樣本基本資料.................................65
  第二節 信度與效度分析...............................71
  第三節 整體模式分析與假說驗證.......................77
第五章 結論與建議.......................................85
  第一節 研究結果.....................................85
  第二節 管理意涵.....................................88
  第三節 研究限制與未來研究建議.......................91
參考文獻.................................................92
附錄:本研究問卷........................................104
一、中文部分
黃嘉勝(1994),創新觀念接受量表在教學科技上的應用,教學科技與媒體,第十五卷,頁31-36。
陳嘉彌(1996),中等學校教師接受創新程度之分析,教育研究資訊,第四卷,第三期,頁86-103。
麥孟生(2000)《個人心理類型、自我效能及態度對電腦學習成效之影響》,國立中央大學資訊管理學系碩士論文。
周文賢(2004)。多變量統計分析SAS/STAT使用方法。台北市:智勝文化。
董峰呈、張淑昭(2007)。A New Hybrid Technology Acceptance Approach for Exploring e-CRM System Adoption in the Financial Services Industry: An Empirical Study。致遠管理學院學報,2(2),41-62。
朱斌妤、黃仟文、翁少白(2008)。以科技接受模式探討即時交通資訊系統之使用意願 。電子商務學報,10 (1),173-200。
資策會(2010)。2010年8月底止台灣行動上網人口。2010年9月16日,取自http://www.find.org.tw/find/home.aspx?page=many&id=257
二、西文部分
Aguilar, T. E.(1985). Social and environmental barriers to playfulness. In J. L. Frost, & S.Sunderlin, (Eds.), When children play. Weaton, MD: Association for Childhoon Education International. 73-76.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckman (Eds.), Action Control: From Cognition to Behavior(pp. 11-39). Heidelberg: Springer.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior & Human Decision Process, 50, 179-211.
Atkinson, M., and Kydd, C.(1997). "Individual Characteristics Associated with World Wide Web use: An Empirical Study of Playfulness and Motivation," The DATABASE for Advances in Information Systems, 28(2), pp. 53-62.
Agarwal, R., & Prasad, J.(1998). A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. INFORMATION SYSTEMS RESEARCH, Vol. 9, No. 2.
Agarwal, R., & Prasad, J.(1999). Are individual differences Germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361–391.
Asvanund, A., Clay, K., Krishnan, R., & Smith, M.D. (2004). An empirical analysis of network externalities in peer-to-peer music-sharing networks. Information Systems Research, 15(2), 155–174.
Ahn, T., Ryu, S., and Han, I.(2007). "The Impact of Web Quality and Playfulness on User Acceptance of Online Retailing," Information & Management, 44(3), Apr, pp. 263-275.
Au, Y. A., & Kauffman, R. J.(2008). The economics of mobile payments: Understanding stakeholder issues for an emerging financial technology application. Electronic Commerce Research and Applications, 7, 141–164.
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavior hange. Psychological review, 84(2), 191-215.
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness-of-fit in the analysis of covariance structure. Psychological Bulletin, 88, 588-606.
Bentler, P. M. (1990). Comparative fit indices in structural models. Psychological Bulletin, 107, 238-246.
Bentler, P. M. (1995). EQS: Structural Equations Program Manual. Encino, CA: Multivariate Software.
Bandura, A. (1982). Self-efficacy mechanism in human Agency. American Psychologist, 37(2), 122-147.
Bandura, A. (1986). Social foundations of thought and action:A Social-Cognitive theory. Englewood Cliffs,NJ:Prentice-Hall.
Barron, F. M. and D. M. Harrington (1981). Creativity, in Telligence and Personality. Annual Review of Psychology, Paloalto, CA: Annual Review, Vol. 32, pp.439-476.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structure equations models. Academic of Marketing Science, 16(1), 76-94.
Brown, L. G. (1989). The Strategic and Tactical Implications of Convenience in Consumer Product Marketing. Journal of Consumer Marketing 6(Summer) 13-19.
Barnett, L. A. (1991) . The playful child: measurement of a disposition to play. Play and Culture , 4(1), 51-74.
Bhattacherjee, A.(2001). Understanding information systems continuance: An expectation confirmation model. MIS Quarterly, 25(3), pp. 351-370.
Berry, L. L., Seiders, K., & Grewal, D. (2002). Understanding service convenience. Journal of Marketing, 66(3), 1–17.
Buehrer, Richard E., Senecal, Sylvain and Ellen Bolman Pullins (2005), Sales Force Technology Usage—Reasons, Barriers, and Support: An Exploratory Investigation, Industrial Marketing Management, 34(4), pp.389-398.
Csikszentmihalyi, M.(1975). Beyond boredom and anxiety. SF: Jossey-Bass.
Carmines, E. G., & McIver, J. P. (1981). Analysing models with unobservable variables. In G. W. Bohrnstedt & E. E. Borgatta (Eds.), Social Measurement Current Issues (pp. 65-115). Beverly Hills, CA: Sage.
Cohen Wesley M.; Levinthal, Daniel A.(1990).“Absorptive capacity: A new perspective on learning and innovation ,”Administrative Science Quarterly; Mar.
Cottrell, T. (1994). “Fragmented Standards and the Development of Japan’s Microcomputer Software Industry,” Research Policy, 23(2), pp. 143-174.
Compeau, D. R. & Higgins, C. A. (1995). Computer self-Efficacy: development of a measure and initial test. MIS Quarterly, 19 (2), 189-192.
Compeau, D. R., Higgins, C. A.,Huff, S. (1999). Social cognitive theory and Individual reactions to computing technology: A longitudinal study. MIS Quarterly, 23 (2), 145-158.
Conner, M., Warren, R., Close, S., Sparks, P., (1999). Alcohol consumption and the theory of planned behavior: an examination of the cognitive mediation of past behavior. Journal of Applied Social Psychology, 29 (8), 1676–1704.
Clarke, I. (2001). Emerging value propositions for M-commerce. Journal of Business Strategies, 18(2), 133–149.
Chang, S.H. and Tung , F.C.(2008). “An empirical investigation of students’ behavioural intentions to use the online learning course websites”, British Journal of Educational Technology, 39(1), pp. 71–83.
Chou & Chen (2009). The influence of individual differences on continuance intentions of enterprise resource planning (ERP). Int. J. Human-Computer Studies 67 484–496.
Davis, F. D. (1986). A technology acceptance model of empirically testing new End-UserInformation Systems: theory and results. Doctoral Dissertation, Sloan School of Management, Massachusetts Institute of Technology.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technologies. MIS Quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, R. P. & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003.
Davis, F.D., Bagozzi, R.P., Warshaw, P.R.,(1992). “Extrinsic and intrinsic motivation to use computers in the workplace, ” Journal of Applied Social Psychology, Vol. 22 Issue 14, pp.1111-1132, Jul.
Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perception, and behavior impacts. International Journal of Man Machine Studies, 38(3), 475–487.
DeLone, W. H. and E. R. McLean (1992). Information Systems Success: The Quest for the Dependent Variable, Information System Research, 3(1), pp.60-95.
Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. MIS Quarterly, 18(4), 453-462.
Ding, X., Ijima, J., & Ho, S. (2004). Unique features of mobile commerce. Tokyo 152- 8552, Japan: Graduate School of Decision Science and Technology, TITECH.
Economides, N.(1996). The economics of networks. International Journal of Industrial Organization, 14(6), 673–699.
Fishbein, M. & Ajzen, I. (1975). Belief, attitude, intentions and behavior:anintroduction to theory and research. Boston: Addison-Wesley.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Gardner, Donald G., Richard L. Dukes, and Richard Discenza. (1993) .“Computer Use, Self-Confidence, and Attitudes: A Causal Analysis,” Computers in Human Behavior, 9(4), 427–40.
Gohmann, Stephan F., Barker, Robert M., Faulds, David J. and Jian Guan (2005). Salesforce Automation, Perceived Information Accuracy and User Satisfactory, Journal of Business & Industrial Marketing, 20(1), pp.23-32.
Guriting, P., Ndubisi N.O. (2006), “Borneo online banking: Evaluating customer perceptions and behavioral intention” , Management Research News, 29(1/2), pp.6-15.
Hurt, H. Y., K. Joseph and C.D. Cook (1977), Scales for the Measurement of Innovativeness, Human Communication Research, Vol.4, pp.58-65.
Hannan, T., and McDowell, J. (1984). The determinants of technology adoption: The case of the banking firm. Rand Journal of Economics, 15(3), 328–335.
Holak, S. L. (1988), Determinants of Innovative Durables Adoption an Empirical Study with Implications for Early Product Screening, Journal of Product Innovation Management, Vol. 5,No. 1, pp.59-73.
Hartwick, J. & Barki, H., (1994). “Explaining the Role of User Participation in Information System Use,” Management Science, 40(4), pp.440-465.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black W. C. (1998). Multivariate data analysis. UK: Prentice Hall.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
Hong, W., Thong, James Y. L., Wong, W. M. & Tam, K. Y. (2001). Determinants of User Acceptance Digital Libraries: An Empirical Examination of Individual Differences and System Characteristics, Journal of Management Information Systems, 18(3), pp.97-124.
Hung, S. Y., Ku, C. Y. & Chang, C. M., (2003), “Critical factors of WAP services adoption: an empirical study”, Electronic Commerce Research and Application, Vol.2, pp.42-60.
Heijden, H., (2004), “User acceptance of hedonic information systems”, MIS Quarterly, Vol.28, No.4, pp.695-704.
Hasan, B.(2006). Delineating the effects of general and system-specific computer self-efficacy beliefs on IS acceptance Information & Management, 43 565–571.
Hirunyawipada, T. & Paswan,A. K.(2006). Consumer innovativeness and perceived risk: implications for high technology product adoption. Journal of Consumer Marketing, 23(4), 182–198.
Horst, M., Kuttschreuter, M. & Gutteling, J. M.(2007). Perceived usefulness, personal experiences, risk perception and trust as determinants of adoption of e-government services in The Netherlands. Computers in Human Behavior 23 1838–1852.
Hsin Hsin Chang.(2008). Intelligent agent’s technology characteristics applied to online auctions’ task: A combined model of TTF and TAM. Technovation, 28, 564–577.
Hsu, C.L., and Lin, J.C.C.(2008). "Acceptance of Blog Usage: The Roles of Technology Acceptance, Social Influence and Knowledge Sharing Motivation," Information & Management, 45(1), Jan, p 65-74.
Jih, W.-J. (2007). Effects of consumer-perceived convenience on shopping intention in mobile commerce. An empirical study. International Journal of E-Business Research, 3(4), 33–48.
Jung & Berthon(2009). Fulfi lling the promise: A model for delivering successful online health care. Journal of Medical Marketing Vol. 9, 3, 243–254.
Kirton, M. J. (1976), Adaptors and Innovators:A Description and Measure. Journal of Applied Psychology, Vol.61, pp. 622-629.
Katz, M.L., and Shapiro, C. (1985). Network externalities, competition, and compatibility. American Economic Review, 75(3), 424–440.
Kauffman, R.J.; McAndrews, J.; and Wang, Y.M. (2000). Opening the “black box” of network externalities in network adoption. Information Systems Research, 11(1), 61–82.
Kim, B. G., Park, S. C., & Lee, K. J.(2007).A structural equation modeling of the Internet acceptance in Korea.Electronic Commerce Research and Applications 6 425–432.
Kim, C., Mirusmonov, M. & Lee. I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior 26, 310–322.
Liebowitz, S.J., and Margolis, S.E. (1995). Are network externalities a new source of market failure? Research in Law and Economics, 17, 1–22.
Lederer, A. L., Maupin, D. J., Sena M. P. & Zhuang, Y., (2000), “The Technology Acceptance Model and the World Wide Web”, Decision Support System, Vol.29, No.3, pp.269-282.
Luis L.Martins; Franz Willi Kellermanns,(2004). ”A model of business school students’acceptance of a Web-Based course management system,”Academy of Management Learning and Education.
Lu, J., Yao, J. E., & Yu, S. H.(2005).Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. Journal of Strategic Information Systems, 14, 245–268.
Lee,Y. C. (2006), “An empirical investigation into the factors influencing the adoption of an e-learning system" , Online Information Review, 30(5), pp. 517-541.
Lim, A. S. (2007). Inter-consortia battles in mobile payments standardization. Electronic Commerce Research and Applications, 2(2), 15–23.
Lee, K. C., Kang, I., Kim, J. S.(2007).Exploring the user interface of negotiation support systems from the user acceptance perspective. Computers in Human Behavior, 23, 220–239.
Lin, C. P. & Bhattacherjee, A. (2008). Elucidating Individual Intention to Use Interactive Information Technologies: The Role of Network Externalities. International Journal of Electronic Commerce, 13(1), pp. 85–108.
Lu, Y., Zhou, T. & Wang, B. (2009). Exploring Chinese users’ acceptance of instant messaging using the theory of planned behavior, the technology acceptance model, and the flow theory. Computers in Human Behavio,r 25, 29–39.
Lee, Y. H., Hsieh, Y. C., & Ma, C. Y.(2011).A model of organizational employees’ e-learning systems acceptance Knowledge-Based Systems, 24, 355–366.
Midgley, D. F. and G. R. Dowling (1978), Innovativeness: The Concept and Its Measurement, Journal of Consumer Research, Vol.4, No. 4, pp. 229-242.
Mumford, M. D. and S. B. Gustafson (1988), Creativity Syndrome: Integration, Application, and Innovation. Psychological Bulletin, Vol.103, No. 27.
Mathieson, K. (1991). “Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior,” Information Systems Research, 2(3), pp.173-191.
Martocchio, J. J., & Webster, J. (1992). Effects of feedback and cognitive playfulness on performance in microcomputer software training. Personnel Psychology , 45(3), 553-578.
Moon, J. W. & Kim, Y. G. (2001) , Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230.
May, P. (2001). Mobile commerce: Opportunities, applications, and technologies of wireless business. Cambridge University Press.
Mallat, N. (2004). Theoretical constructs of mobile payment adoption. Paper presented at the 27th Information Systems Research Seminar in Scandinavia (IRIS), Falkenberg, Sweden, August, 14–17.
Mallat, N., & Dahlberg, T. (2005). Consumer and merchant adoption of mobile payment solutions. Managing business in a multi-channel world: Success factors for e-Business. Hershey, PA 17033, USA: Idea Group Publishing.
Meuter,M. L., Bitner, M. J., Ostrom, A. L., & Brown, S. W.(2005). Choosing Among Alternative Service Delivery Modes: An Investigation of Customer Trial of Self-Service Technologies. Journal of Marketing, Vol. 69, 61–83.
Mallat, N., Rossi, M., & Tuunainen, V.K. (2006). The impact of use situation and mobility on the acceptance of mobile ticketing services. In Proceedings of the 39th Hawaii international conference on system sciences. Hawaii.
O’reilly, C. A. III (1982). Variations in Decision Makers’ Use of Information Sources: The Impact of Quality and Accessibility of Information, Academy of Management Journal, 25(4), pp.756-771.
O’Cass, A. & Fenech, T. (2003). Webretailing adoption: exploring the nature of internet users Webretailing behavior. Journal of Retailing and Consumer Services, 10, 81–94.
Obe, O. O., & Balogu, V. F. (2007). Practice, trends and challenges of mobile commerce in Nigeria. Information Technology Journal, 6(3), 448–456.
Perry, M., O’hara, K., Sellen, A., Brown, B., & Harper, R. (2001). Dealing with mobility: Understanding access anytime, anywhere. ACM Transactions on Computer–Human Interaction, 8(4), 323–347.
Raju, P. S. (1980), Optimum Stimulation Level: Its Relations hip to Personality, Demographics, and Exploratory Behavior, Journal of Consumer Research, Vol. 7, pp. 272-282.
Rogers, Everett M. (1995). Diffusion of Innovations, 4th ed. New York: The Free Press.
Robinson, L., Marshall, G. W., & Stamps, M. B.(2005). Sales force use of technology: antecedents to technology acceptance Journal of Business Research, 58, 1623–1631.
Roca, J. C. & Gagne, M.(2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior, 24, 1585–1604.
Ryu, M. H., Kim, S. & Lee, E. (2009). Understanding the factors affecting online elderly user’s participation in video UCC services. Computers in Human Behavior, 25, 619–632.
Shurmer, M. (1993). “An Investigation into Sources of Network Externalities in the Packaged PC Software Market,” Information Economics & Policy, 5(3), 1993, pp. 231-251.
Saloner, G., and Shepard, A. (1995). Adoption of technologies with network effects: An empirical examination of the adoption of automated teller machines. Rand Journal of Economics, 26(3), 479–501.
Shapiro,C & Varian, H.(1999),Information Rules:A Strategic Guide to the Network Economy, Harvard Business School Press, Boston, Massachusetts.
Steenkamp, E. M., F. Hofstede and M. Wedel (1999), A Cross-National Investigation Into the Individual and NationalCultural Antecedents of Consumer Innovativeness, Journal of Marketing, Vol.63. No. 2, pp.55-69.
Siau, K., Lim, E.P. & Shen, Z. (2001). “Mobile Commerce: Promises, Challenges, and Research Agenda.” Journal of Database Management, 12(3), pp. 4-13.
Shy, O.(2001), The Economics of Network Industries. Cambridge University press.
Schiffman, L. G. (2003), Consumer Behavior, 9th ed. Prentice-Hall, Inc.
Subin I, B. L. Bayus and C. H. Mason (2003), An Empirical Study of Innate Consumer Innovativeness, Personal Characteristics, and New-Product Adoption Behavior, Journal of Academy of Marketing Science, Vol.31, No.1, pp.61-73.
Seyal, A. H., Rahman, N. A.(2007), “The influence of external variables on the executives' use of the internet” , Business Process Management Journal, 13(2), pp. 263-278.
Serenko (2008). A model of user adoption of interface agents for email notification. Interacting with Computers, 20, 461–472.
Scott, J. E., & Walczak, S. (2009). Cognitive engagement with a multimedia ERP training tool: Assessing computer self-efficacy and technology acceptance. Information & Management, 46(4), 221–232.
Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9, 209–216.
Taylor, S. & Todd, P. (1995). Assessing IT usage: the role of prior experience. MIS Quarterly, 19(4), 561-570.
Thong, J. Y. L., Hong, W. & Tam, K. Y. (2002). Understanding user acceptance of digital libraries: what are the roles of interface characteristics, organizational context, and individual differences?. International Journal of Human-Computer Studies, 57(3), 215-242.
Taylor, N. J.(2007). Public grid computing participation: An exploratory study of determinants. Information & Management 44 12–21.
Venkatraman, M. P. (1991), The Impact of Innovativeness and Innovation Type on Adoption, Journal of Retailing, pp. 51-67.
Venkatesh, V. & F. D. Davis, (1996). “A model of the antecedents of perceived ease of use: Development and Test”, Decision Sciences, 27(3), pp.451-481.
Venkatesh, V., and Davis, F.D., (2000). “A Theoretical Extension of the echnology Acceptance Model: Four Longitudinal Field Studies”, Management Science, vol. 46, pp.186-204.
Venkatesh, V. (2000). Determinants of perceived ease of use. Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information System Research, 11(4), 342–365.
Wu, J. H., Chen, Y.C., & Lin, L.M. (2007). Empirical evaluation of the revised end user computing acceptance model. Computers in Human Behavior 23 162–174.
Wang, C. C., Lo, S. K., & Fang, W. (2008). Extending the technology acceptance model to mobile telecommunication innovation: The existence of network externalities.Journal of Consumer Bcliaviour J. Consumer Behav. 7, 101-110.
Xu, G., & Gutierrez, J. A. (2006). An exploratory study of killer applications and critical success factors in M-commerce. Journal of Electronic Commerce in Organizations, 4(3), 63–79.
Yang, C. C.(2005). Exploring factors affecting the adoption of mobile commerce in Singapore. Telematics and Informatics, 22, 257–277.
Zmud, R. W. (1979). Individual differences and MIS success: a review of the empirical literature. Management Science, 25(10), 966–979.
Zhou & Lu (2010). Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Computers in Human Behavior.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top