跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭淑君
研究生(外文):Hsiao,Shu-Chun
論文名稱:分離自澎湖沿岸產纖維素酶細菌之研究
論文名稱(外文):Study on the cellulase-producing bacteria isolated from the coast of Penghu
指導教授:陳名倫陳名倫引用關係
指導教授(外文):Chen Ming-Lun
口試委員:張虹書
口試委員(外文):Chang,Hung-Shu
口試日期:2011-07-27
學位類別:碩士
校院名稱:國立澎湖科技大學
系所名稱:食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:126
中文關鍵詞:海洋細菌纖維素酶鹼性纖維素酶
外文關鍵詞:marine bacteriumcellulasealkaline cellulase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:2
本研究利用剛果紅試驗自澎湖沿岸分離出108株產纖維素酶之海洋細菌,自8株具較高纖維素酶活性中篩選出二株產鹼性纖維素酶之菌株,經革蘭氏染色及16S rDNA序列比對結果鑑定Bacillus pumilus(C4)及Vibrio屬(C7)。C4生產之CMCase、Avicelase及β-glucosidase最適作用pH分別為pH9、pH8和pH9,最適作用溫度則分別為50℃、30℃和50℃;而C7生產之CMCase、Avicelase及β-glucosidase最適作用pH分別為pH8、pH8和pH6,最適作用溫度則分別為30℃、50℃和50℃。C4生產之Avicelase具有較廣之pH穩定性,在pH6-9範圍內,12小時後仍可保有70%以上之活性;而C7則是以CMCase具有較廣之pH穩定性,在pH3-10範圍內,12小時後仍可保有70%以上之活性;C4和C7生產之纖維素酶於10-40℃之間,5小時內,其活性可維持在80%以上。C4培養於纖維素酶發酵培養基72小時後,生產之CMCase及β-glucosidase活性,最高可達0.360 IU/ml和0.102 IU/ml,而C7則為0.812 IU/ml和0.102 IU/ml,培養96小時後,C4之Avicelase活性最高可達1.267 IU/ml,而C7則為1.262 IU/ml。C7之粗酵素液經凍乾濃縮後,利用DEAE FF陰離子交換管柱層析分離CMCase和Avicelase,經SDS-PAGE分析後發現蛋白質分子量介於97-116 kDa之間。
108 cellulase producing marine bacteria were isolated from Penghu coast by Congo red test and 8 isolates with higher cellulolytic activity were screened for the production of alkaline cellulase. C4 and C7 alkaline cellulase producing isolate were identified as Bacillus pumilus and Vibrio sp. by Gram stain and 16S rDNA sequence analysis. The optimal pH for CMCase, Avicelase and β-glucosidase activity of C4 isolate was 9, 8 and 9, respectively. The optimal temperature for CMCase, Avicelase and β-glucosidase activity of C4 isolate was 50, 30 and 50℃, respectively. The optimal pH for CMCase, Avicelase and β-glucosidase activity of C7 isolate was 8, 8 and 6, respectively. The optimal temperature for CMCase, Avicelase and β-glucosidase activity of C7 isolate was 30, 50 and 50℃. For C4 isolate, the Avicelase has broad pH stability ranging from pH 6 to pH9 and residual activity was above 70% of original activity after 12h incubation. For C7 isolate, the CMCase has broad pH stability ranging from pH 4 to pH10 and residual activity was above 70% of original activity after 12h incubation. More than 80% of original cellulose activity was maintained at relative low temperature ranging from 10 to 40℃ after 5h incubation for C4 and C7 isolate. The highest activities of CMCase (0.360 IU/mL) and β-glucosidase (0.102 IU/mL) of C4 were observed in the cellulose fermentation medium for 72h. The highest activities of CMCase (0.812 IU/mL) and β-glucosidase (0.120 IU/mL) of C4 were observed in the cellulose fermentation medium for 72h.
The highest activity of Avicelase was 1.267 IU/mL and 1.262 IU/mL obtained from C4 and C7 isolate after 96h incubation, respectively. The crude cellulose of C7 isolate were concentrated by freeze drying and then purified by the anion-exchange chromatography with a DEAE column. The molecular weights of purified proteins were between 97-116 kDa by SDS-PAGE analysis
表次.............................................................................................................................. IV 圖次............................................................................................................................... V 中文摘要.................................................................................................................... VII 英文摘要................................................................................................................... VIII
第一章 文獻回顧 ........................................................................................ 1
1. 纖維素 ........................................................................................................................... 1
1.1. 纖維素之組成 ........................................................................................................ 1
1.2. 纖維素之來源 ........................................................................................................ 1
1.3. 纖維素之水解 ........................................................................................................ 5
2. 纖維素酶 ....................................................................................................................... 7
2.1. 內切纖維素酶 ........................................................................................................ 7
2.2. 外切纖維素酶 ........................................................................................................ 7
2.3. β-葡萄糖苷酶......................................................................................................... 8
2.4. 纖維素酶的作用機制 ............................................................................................ 8
2.5. 纖維素酶的回饋抑制 ............................................................................................ 9
2.6. 纖維素酶測定 ........................................................................................................ 9
2.7. 纖維素酶的應用 .................................................................................................... 9
3. 降解纖維素之微生物種類 ......................................................................................... 15
4. 海洋細菌 ..................................................................................................................... 18
5. 鹼性纖維素酶 ............................................................................................................. 19
6. 鑑定海洋菌株之方法-16S rDNA (ribosomal deoxyribonucleic acid, rDNA) ........... 21
7. 聚合酶鏈鎖反應(polymerase chain reaction ,PCR) .............................................. 27
8. 酵素純化 ..................................................................................................................... 24
8.1. 鹽析分劃法 .......................................................................................................... 24
8.2. 透析法 .................................................................................................................. 24
II
8.3. 管住層析 .............................................................................................................. 25
第二章 前言 ............................................................................................................... 27 第三章 材料方法 ....................................................................................................... 28
1. 實驗儀器與藥品 ......................................................................................................... 29
1.1. 儀器設備 .............................................................................................................. 29
1.2. 藥品及試劑 .......................................................................................................... 31
1.3. 商業測試套組 ...................................................................................................... 32
1.4. 培養基的組成 ...................................................................................................... 32
1.5. 溶液及試劑配製 .................................................................................................. 34
2. 實驗方法 ..................................................................................................................... 36
2.1. 菌株來源 .............................................................................................................. 36
2.2. 菌株篩選、鑑定及保存 ...................................................................................... 36
2.2.1. 菌株篩選 ..................................................................................................... 36
2.2.2. 革蘭氏染色 ................................................................................................. 37
2.2.3. 16S rDNA菌種鑑定 ................................................................................... 37
2.3. 粗酵素液之製備 .................................................................................................. 42
2.4. 纖維素酶活性分析 .............................................................................................. 42
2.4.1. 剛果紅試驗 ................................................................................................. 42
2.4.2. 內切纖維素酶活性之測定 ......................................................................... 43
2.4.3. 外切纖維素酶活性之測定 ......................................................................... 43
2.4.4. β-葡萄糖苷酶活性之測定 .......................................................................... 43
2.4.5. 二硝基水楊酸(DNS)還原糖測定法 ........................................................... 44
2.5. 粗纖維素酶之生化特性 ........................................................................................ 44
2.5.1. 最適作用pH的測定 .................................................................................. 44
2.5.2. 最適作用溫度的測定 ................................................................................. 45
2.5.3. pH值穩定性測定 ....................................................................................... 45
2.5.4. 溫度穩定性測定 ......................................................................................... 45
III
2.6. 酵素純化 ................................................................................................................ 46
2.6.1. 培養時間對菌株生產纖維素酶之影響 ..................................................... 46
2.6.2. 硫酸銨沉澱 ................................................................................................. 46
2.6.3. 丙酮沉澱 ..................................................................................................... 47
2.6.4. 透析 ............................................................................................................. 47
2.6.5. 陰離子交換樹脂 ......................................................................................... 47
2.7. 蛋白質總量測定 .................................................................................................... 48
2.8. SDS-PAGE電泳分析 ............................................................................................ 49
第四章 結果與討論 ................................................................................................... 51
1. 菌株分離 ..................................................................................................................... 51
2. 產纖維素黴菌株之篩選 ............................................................................................. 51
3. 菌落型態 ..................................................................................................................... 52
4. 革蘭氏染色 ................................................................................................................. 52
5. 菌種16S rDNA序列之定序分析 .............................................................................. 52
6. 分離株粗纖維素酶之特性分析 ................................................................................. 54
6.1. 粗纖維素酶之最適作用pH ................................................................................ 54
6.2. 粗纖維素酶之最適作用溫度 .............................................................................. 57
6.3. 粗纖維素酶之穩定性 .......................................................................................... 58
6.3.1. pH穩定性 ................................................................................................... 58
6.3.1. 溫度穩定性 ................................................................................................. 59
7. 纖維素酶之純化 ......................................................................................................... 60
7.1. 培養時間對菌株生產纖維素酶之影響 .............................................................. 60
7.2. 粗酵素之回收 ...................................................................................................... 61
7.3. DEAE FF陰離子交換管柱層析 ......................................................................... 61
7.4. SDS-PAGE分析 .................................................................................................. 62
第五章 結論 ............................................................................................................... 63 第六章 參考文獻 ....................................................................................................... 88
IV
表次 表1. 纖維素酶的組成分對纖維素之作用方式........................................................ 10 表2. 測定纖維素酶活性的基質及分析方法............................................................ 12 表3. 纖維素酶在工業上之應用................................................................................ 13 表4. 產纖維素酶之微生物........................................................................................ 17 表5. 利用剛果紅測試法所得菌株纖維素酶之活性................................................ 64 表6. 分離菌株之特徵及鑑定結果............................................................................ 69
V
圖次 圖1. 纖維素的結構...................................................................................................... 3 圖2. 植物細胞壁中纖維素的結構.............................................................................. 4 圖3. 纖維素酶之協同機制 . ................................................................................... 11 圖4. 聚合酶連鎖反應................................................................................................ 23 圖5. 纖維素酶生產菌形成之酵素圈........................................................................ 67 圖6. 分離株在TSBN培養基培養於25℃ 24小時後之型態 ................................ 68 圖7. 菌株生長在TSBN下顯微鏡之觀察 ............................................................... 70 圖8. pH對各分離株之內切纖維素酶反應活性之影響 .......................................... 71 圖9. pH對各分離株之外切纖維素酶反應活性之影響 .......................................... 72 圖10. pH對各分離株之β-葡萄糖苷酶反應活性之影響 ......................................... 73 圖11. 溫度對各分離株之內切纖維素酶反應活性之影響...................................... 74 圖12. 溫度對各分離株之外切纖維素酶反應活性之影響...................................... 75 圖13. 溫度對各分離株之β-葡萄糖苷酶反應活性之影響 ....................................... 76 圖14. pH對C4產之內切纖維素酶穩定性之影響 ................................................. 77 圖15. pH對C4產之外切纖維素酶穩定性之影響 ................................................. 78 圖16. pH對C4產之β-葡萄糖苷酶穩定性之影響 ................................................... 79 圖17. pH對C7產之內切纖維素酶穩定性之影響 ................................................. 80 圖18. pH對C7產之外切纖維素酶穩定性之影響 ................................................. 81 圖19. pH對C7產之β-葡萄糖苷酶穩定性之影響 ................................................... 82 圖20. 溫度對C4產之內切纖維素酶穩定性之影響 ............................................... 83 圖21. 溫度對C4產之外切纖維素酶穩定性之影響 ............................................... 84 圖22. 溫度對C4產之β-葡萄糖苷酶穩定性之影響 ................................................ 85 圖23. 溫度對C7產之內切纖維素酶穩定性之影響 ............................................... 86 圖24. 溫度對C7產之外切纖維素酶穩定性之影響 ............................................... 87 圖25. 溫度對C7產之β-葡萄糖苷酶穩定性之影響 ................................................ 88
圖26. 培養時間對分離株C4產之纖維素酶活性的影響 ....................................... 89
VI
圖27. 培養時間對分離株C7產之纖維素酶活性的影響 ....................................... 90 圖28. 陰離子交換管柱層析...................................................................................... 91 圖29. 纖維素酶之蛋白質電永圖 ................................................................................. 92
Acebal, C., Castillon, M. P., Estrada, P., Mata, I., Costa, E., Aguado, J., Romero, D. and Jimenez. F. 1986. Enhanced cellulase production from Trichoderma reesei QM 9414 on physically treated wheat straw. Applied Microbiology and Biotechnology. 24: 218-223.
Anish, R. and Rahman, M. S. 2007. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnology and Bioengineering. 96: 48-56. Ariffin, H., Abdullah, N., Umi Kalsom, M. S., Shirai, Y. and Hassan, M. A. 2006. Production and characterization of cellulase by Bacillus pumilus EB3. International Journal of Engineering and Technology. 3: 47-53.
Artur, C. P. 1998. Mechanism of cellulase action in textile processes. Carbohydrate Polymers. 37: 273-277.
Bandow, J. E., Brötz, H. and Hecker, M. 2002. Bacillus subtilis tolerance of moderate concentrations of rifampin involves the ςB-dependent general and multiple stress response. J Bacteriol. 184: 459–467. Bhat, M. K. and Bhat, S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances. 15: 583-620. Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnology Advances. 18: 355-383. Boeyb A. and Aerts M. 1976. Numerical Taxonomy of Bacillus Isolates from North Sea Sediments. International Journal of Systematic Eriolo. 26:427-441.
Bothwell, M. K., Daughheteeb, S. D., Chauaa, G. Y., Wilsonb, D. B. and Walkera,L. P. 1997. Binding capacities for Thermomonospora fusca E3, E4 and E5, the E3 binding domain, and Trichoderma reesei CBHI on Avicel and bacterial microcrystalline cellulose. Bioresource Technology. 60: 169-178.
Cai, Y., Chapman, S., Buswell, J. and Chang, S. T. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and β-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Applied and Environmental Microbiology. 65: 553-559. Chen, M. L. and Tsen, H. Y. 2002. Discrimination of Bacillus cereus and Bacillus thuringiensis with 16S rRNA and gyrB gene based PCR primers and sequencing of their annealing sites. Journal of Applied Microbiology. 92: 912-919. Cheng, H. H. and Yin, L. J. 2007. Medium effects on the increase of protease and cellulase activities of Bacillus subtilis BCRC14716. Journal of the Fisheries Society of Taiwan. 34: 291-298.
Cosgrove, D. J. 1998. Cell walls: structures, biogenesis, and expansion. In: plant physiology. 409-443.
Coughlan, M. P. 1985. Cellulase : production properties and application. Biochemical Society Transactions. 13: 405-406.
Dongowski, G. and Sembries, S. 2001. Effects of commercial pectolytic and cellulolytic enzyme preparations on the apple cell wall. Journal of Agricultural and Food Chemistry. 49: 4236-4242.
Du, F., Wolger, E., Wallace, L., Liu, A., Kaper, T. and Kelemen, B.2010. Determination of product Inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay. Appl Biochem Biotechnol. 161:313–317.
Dumas, V. F., Goldenberg, C. S., Martins, E. S., Praca, L. B., Queiroz, P. R., Monnerat, R. G. and Melo, F. R. 2009. Chitinase and cellulase activity from Bacillus thuringiensis strains Universitas: Ciencias da Saude, Brasilia. 7:1-12.
Ekperigin, M. M. 2007. Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp.. African Journal of Biotechnology. 6:28-33.
Eveleigh, D. E., Mandels, M., Andreotti, R. and Roche, C. 2009. Measurement of saccharifying cellulase. Biotechnology for Biofuels. 2: 1-8. Farone, W. A. and Cuzens, J. E. 1998. Method of producing sugars using strong acid hydrolysis. United States Patent. 5726046:1-8.
Gao, Z., Ruan, L., Chen, X., Zhang Y. and Xu X. 2010. A novel salt-tolerant endo-β-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl Microbiol Biotechnol. 87:1373–1382.
Garsoux, G., Lamotte, J., Gerday, C. and Feller, G. 2004. Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium seudoalteromonas haloplanktis. Biochemical Journal. 384: 247–253.
Ghose, T. K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry. 59: 257-268. Han, W. and He, M. 2010. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresource Technology. 101:3721-3731.
Ikeda, Y., Park, E. Y. and Okuda, N. 2006. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresource Technology. 97:1030-1035.
Inoue, T., Murashima, K., Azuma, J. I., Sugimoto, A. and Slaytor, M. 1997. Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. Journal of Insect Physiology. 43: 235-242. Ivanova, E. P., Vysotskii, M. V., Svetashev, V. I., Nedashkovskaya, O. I., Gorshkova, N. M., Mikhailov, V. V., Yumoto, N., Shigeri Y., Taguchi, T. and Yoshikawa, S. 1999. Characterisation of Bacillus strains of marine origin. Int.Microbiol. 2: 267-271.
Jahangeer, N., Khan, S., Jahangeer, M., Sohail, S., Shahzad, A. A. and Khan, S. A. 2005. Screening and characterization of fungal cellulases isolated from the native environmental source. Pakistan Journal of Botany. 37: 739-748.
Jahangeer, S., Khan ,N., Jahangeer, S., Sohail, M., Shahzad, S., Ahmad, A. and Khan, S. A. 2005. Screening and characterization of fungal cellulases isolated from the native environmental source. Pakistan Journal of Botany. 37: 739-748.
Kane, M. D., Poulsen, L. K. and Stahl, D. A. 1993. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Applied and Environmental Microbiology. 59: 682-686.
Karimi, K., Kheradmandinia, S. and Taherzadeh, M. J. 2006. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy. 30: 247-253. Kavian, M. F. Ghatnekar, S.D. and Kulkarni, P. R. 1999. Studies on cellulase of Lumbricus rubellus (USA). Bioresource Technology. 69: 161-165.
Koga, J., Baba, Y., Shimonaka, A., Nishimura, T., Hanamura, S. and Kono, T. 2008. Purification and characterization of a new family 45 endoglucanase, STCE1, from Staphylotrichum coccosporum and its overproduction in Humicola insolens. Applied and Environmental Microbiology. 74: 4210-4217.
Kotchoni, S. O. and Shonukan, O. O. 2002. Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. World Journal of Microbiology & Biotechnology. 18: 487–491.
Kotchoni, S. O., Gachomo, E. W., Omafuvbe, B. O. and Shonukan, O. O. 2006. Purification and biochemical characterization of carboxymethyl cellulase (CMCase) from a catabolite repression insensitive mutant of Bacillus pumilus. International Journal of Agriculture & Biology. 8: 286-292. Lee, B. H., Kim, B. K., Lee, Y. J., Chung, C. H. and Lee, J. W. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme and Microbial Technology. 46: 38–42. Lee, Y. J., Kim, B. K., Lee, B. H., Jo, K. I., Lee, N. K., Chung, C. H., Lee, Y. C. and Lee, J. W. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology. 99: 378-386.
Li, X., Dong, X., Zhao, C., Chen, Z. and Chen F. 2003. Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying ability from soil. World Journal of Microbiology. 19: 375–379.
Liu, J. and Xia, W. 2006. Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochemical Engineering Journal. 30: 82-87.
Lynd, L. R., Weimer, P. J., Zyl, W. H. and Pretorius, I. S. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews. 66: 506-577. Martinez, A., Ramirez, O. T. and Valle, F. 1997. Improvement of culture conditions to overproduce b-galactosidase from Escherichia coli in Bacillus subtilis. Appl Microbiol Biotechnol. 47: 40-45.
Mawadza, C., Hatti-Kaul, R., Zvauya, R. and Mattiasson, B. 2010. Purifiction and characterization of cellulases produced by two Bacillus strains. Journal of Biotechnology. 83: 177-187.
Mohamed S. A. S., Magdi A. M. Y., Francis F. H. and Moustafa A. N. E. 2010. Production of cellulose in low-cost medium by Bacillus subtilis KO strain. World Applied Sciences Journal. 8: 35-42.
Mosier, N. S., Ladisch, C. M. and Ladisch, M. R. 2002. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering. 79: 610-618.
Munn, C. B. 2004. Marine Microbiology. Ecology and Applications. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J.and Setlow, P. 2000.Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiblogy and Molecular Biology Reviews. 64: 548-572.
Nidetzky, B., Steiner, W., Hayn, M. and Claeyssens, M. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochemical Journal. 298: 705-710. Nishida, Y., Suzuki, K., Kumagai, Y., Tanaka, H., Inoue, A. and Ojima, T. 2007. Isolation and primary structure of a cellulose from the Japanese sea urchin Strongylocentrotus nudus. Biochimie. 89:1002-1011. Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R. and Stahl, D. A. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annual Review of Microbiology. 40: 337.
Parvathi, A., Krishna, K., Jose, J., Joseph, N. and Nair S. 2009. Biochemical and molecular characterization of Bacillus pumilus isolated from coastal environment in COCHIN, INDIA. Brazilian Journal of Microbiology. 40: 269-275. Ramos, L. P., Nazhadt, M. M. and Saddler, J. N. 1993. Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enzyme and Microbial Technology. 15: 821-831.
Rastogi, G., Bhalla, A., Adhikari, A., Bischoff, K. M., Hughes, S. R., Christopher,L. P. and Sani, R. K. 2010. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresource Technology. 101: 8798–8806.
Reverbel, C., Pages, S., Belaich, A., Belaich, J. P. and Tardif, C. 1997. The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. Journal of Bacteriology. 179: 46-52. Saha, B. C. 2004. Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochemistry. 39: 1871-1876.
Sandgren, M. and Stahlberg, J. 2005. Structural and biochemical studies of GH family 12 cellulases improved thermal stability, and ligand complexes. Progress in Biophysics and Molecular Biology. 89: 246-291. Sariri, R., Najafi, F. and Arasteh, A. 2006. The effect of cellulose extracted from symbiotic tea fungies on the quality of Iranian tea. Enzyme and Microbial Technology. 39:308-310.
Shabeb, M. S. A., Younis, M. A. M., Hezayen, F. F. and Nour-Eldein, M. A. 2010. Production of Cellulase in Low-Cost Medium by Bacillus subtilis KO Strain. World Applied Sciences Journal. 8: 35-42.
Shanmughapriya, S., Kiran, G. S., Selvin, J., Thomas, T. A. and Rani, C. 2010.Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Applied Biochemistry and Biotechnology. 162: 625-640.
Taiz, L., Zeiger, E. 2002. Plant Physiology(3rd edition). Sunderland :Sinauer Associates, Inc. 15: 313-338. Teather, R. M. and Wood, P. J. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine remun. Applied and Environmental Microbiology. 37: 777-780.
Trivedi, N., Gupta, V., Kumar, M., Kumari, P., Reddy, C. R. K. and Jha, B. 2011. An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydrate Polymers. 83: 891-897. Tuneer, M., and Ball, A. S. 2002. Degradation of lignocellulose by extracellular eltzymes produced by Thermomonospora fusca BD25. Applied Microbiology and Biotechnology. 58: 608-611.
Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Jorunal of Bacteriology. 173: 697-703. Woese, C. R. 1987. Bacterial evolution. Microbiological Reviews. 51: 221-271. Wood, B. J. B. 2006. 發酵食品微生物學。 藝軒圖書出版社。1: 87-107. Ye, X.Y., Ng, T. B. and Cheng, K. J. 2001. Purification and characterization of a cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli. The International Journal of Biochemistry & Cell Biology. 33: 87-94.
Yin, L. J., Lin, H. H. and Xiao, Z. R. 2010. Purification and characterization of a cellulose from Bacillus subtilis YJ1. Journal of Marine Science and Technology. 18: 466-471.
Zeng, R., Xiong, P., Wen, J. 2006. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles. 10:79–82.
尤智立。 2003。 嗜高溫纖維分解菌纖維分解酵素的探討。 國立中山大學生物 科學研究所碩士論文。
吳欣庭。 2005。 多重分解酵素生產菌種之篩選、鑑定與基本性質研究。 朝陽 科技大學應用化學系碩士論文。
李丹、陳麗、李富超、王淑軍和李華鐘。 2007。 一株產低溫鹼性蛋白酶海洋細 菌。 食品與生物技術學報。 26:74-80。
李忠玲、王衛衛、任平、趙文娟、張紅艷和陳衛鋒。 2008。 產鹼性纖維素酶兼 性厭氧菌株的篩選和酶學性質的初步研究。微生物學通報。 6:851-854。
辛總秀。 2005。 纖維素酶在養殖業中的研究應用。青海大學學報。23:40–43。
林則葹。 2008。利用微生物將纖維素廢棄物轉化為生質酒精。大葉大學生物產 業科技學系碩士論文。
林森。 2005。 複合纖維素酶在酒精生產中的應用研究。安徽工程科技學院學報。 20:30-33。
邵廣昭、陳義雄和黃將修。 2000。 海洋生命科學導論。 教育部顧問室海洋教 育先導型計畫辦公室。 邵學良和劉志偉。 2009。 纖維素酶的性質及其在食品工業中的應用。中國食物 與營養。 8:34–36。
侯進慧。 2010。 胡蘿蔔表面產纖維素酶細菌初步鑑定分析。 食品科學。31: 233-236。
洪義國、孫謐、張雲波和李勃生。 2002。 16S rRNA在海洋微生物系統分子分 類鑑定及分子檢測中的應用。 海洋水產研究。 23:58–63。
胡亞冬、謝春芳、張琰和姚冬生。 2010。 參環毛蚓腸道內源性纖維素酶的分離 純化及酶學性質分析。 暨南大學學報(自然科學版)。 31:89–94。
胡葉碧、楊森林和劉權國。 2004。 牛仔布纖維素酶整理中起花和返染的控制。 印染。30:28–29。
徐清華、秦楚華和傅英娟。 2007。 廢新聞紙纖維素酶、半纖維素酶與漆酶/界 體協同脫墨作用。 化工學報。 58:3152-3157。
徐慶強、張志明、王延明、卓礫、殷麗莎和杜宗軍。 2009。 產鹼性纖維素酶海 洋細菌的篩選、鑑定及酶學性質研究。 海洋科學。33:1–5。 袁景道。 2001。
海洋細菌Pseudomonas vesicularis MA103之agarases發酵槽生產條件探討以及海藻多醣與經酵素水解所得寡糖之應用。 國立台灣海洋大學食品科學系碩士論文。
張玉瓏、徐乃芝和許素菁。 2009。 生物技術。新文京開發。 4 張雯惠和林俊宏。 2005。 聚合酶連鎖反應簡介。奈米通訊。 12:6–11。
郭成栓、歐陽蒲月、崔堂兵和郭勇。 2011。 一株鹼性纖維素梅產生菌的分離、 鑑定及酶譜分析。 生物技術。21:57-59。
陳冠軍、杜宗軍和高培基。 2000。 耐鹼性真菌纖維素酶生產菌的篩選及酶學性 質的初步研究。 工業微生物。 30:23–27。
陳建孝和林畢修平。 2007。 纖維酒精製程簡介與未來展望。永續農業發展雙月 刊。35:7–15。
陳洪章。 2011。 纖維素生物技術(第二版)。化學工業出版社。
曾青藍。 2008。 產鹼性纖維素酶真菌的篩選鑑定及酶學性質研究。湖北衣業科 學。47:899–901。
黃俊輝和曾廣孝。 2000。 纖維素酶酶解法提高海藻脂質抽提率的研究。 食品 科技。 3:31–34。
黃啟裕。 2008。 纖維素產氫技術在生質能源之發展。 農業生技產業季刊,植 物種苗生技。 13:54–60。
楊尚科。 2005。 利用海洋細菌S-12-86的多相分類鑑定及其所產溶菌酶的性質 和應用。 中國海洋大學碩士論文。
楊柳、魏兆軍、朱武軍和葉明。 2008。 產纖維素酶菌株的分離、鑑定及其酶學性質研究。 微生物學雜誌。 28:65–69。
寧靜。 2000。 鹼性纖維素酶產生菌的篩選及產酶條件。 科技通報。 16:216-218。
錢坤、曹海建和盛東曉。 2004。纖維素酶在毛巾整理中的應用。 印染。 30: 26–27。
錢林、鄭巧利、付瑾、王慧萍、鄭春麗和柳建設。 2010。 一株高效纖维素降解 菌株的分離鑑定及其酶學性質。 微生物学通报。 37:524-528。
謝易儒。 2008。 嗜鹽菌Vibrionaceae sp. NTU 05纖維水解酶基因之選殖與表現。
臺灣大學園藝學研究所碩士論文。 鍾志文。 2010。 耐高溫葡聚糖水解酵素生產菌株的篩選與酵素生化特性分析。 大仁科技大學生物科技研究所碩士學位論文。
羅巔輝。 2008。 產鹼性纖維素酶菌株的篩選、發酵條件優化與性質研究。遼寧 師範大學學報(自然科學版)。 31:353-356。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top