跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/26 01:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱吉嗣
研究生(外文):Chi-Ssu Chiu
論文名稱:植牙擴孔鑽鑽孔參數對齒槽骨溫升之影響
論文名稱(外文):The Effect of Implant Twist Drill Drilling Parameters on the Temperature Rise of Alveolar Bone
指導教授:陳勇全陳勇全引用關係
指導教授(外文):Yung-Chuan Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:103
中文關鍵詞:動態有限元素模型實驗深度鑽擴孔鑽骨疽溫升
外文關鍵詞:Dynamic Finite Element ModelExperimentsPilot drillTwist drillNecrosisTemperature Rise
相關次數:
  • 被引用被引用:2
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討植牙鑽孔過程時,深度鑽及擴孔鑽之不同鑽孔參數,對於齒槽骨溫度之影響。本文所探討之鑽孔參數包括鑽頭進刀速率及鑽頭轉速。經由實驗與數值模擬之鑽孔過程,分析骨頭溫度分佈之情形。本文提出三維動態彈塑性有限元素模型,來探討鑽孔參數對骨頭溫升之影響。此外,利用人工代骨與豬隻下顎骨之鑽孔實驗,來驗證有限元素模型之準確性。分析結果顯示,本研究所提之三維動態有限元素模型,可有效模擬出鑽孔過程中,骨頭溫升之情形。於深度鑽或擴孔鑽之鑽孔過程中,骨頭最高溫度發生之深度,皆為海綿骨靠近皮質骨之位置。而鑽頭之進刀速率是影響骨頭最高溫度所發生時間之最重要因素。結果也指出,骨頭之溫升會隨著鑽頭進刀速率之增加以及轉速之降低而減少。此外,增加鑽頭進刀速率或降低轉速皆能有效減少骨頭骨疽之範圍。而此分析結果,能提供醫師於植牙手術時,選擇鑽孔參數之參考。
In this thesis, the effects of implant pilot drill and twist drill drilling parameters on the temperature rise of alveolar bone are investigated. The parameters discussed are the feeding rate and drilling speed of the drill bit. The bone temperature distributions during bone drilling are analyzed both experimentally and numerically. A three-dimensional elastic-plastic dynamic finite element model is proposed to explore the effect of the parameters on the bone temperature rise. The biomechanical test blocks and pig alveolar bone are experimentally tested to validate the proposed finite element model. The results indicate that the proposed elastic-plastic dynamic finite element model can provide a good prediction on the bone temperature rise while drilling through the bone. The results also indicate that in the pilot and twist drilling process, the depth where the maximum bone temperature happens is located at the cancellous bone region near the cortical bone. The feeding rate of drill bit is the most important factor affected the drilling time that maximum bone temperature occurs. The results also indicate that the bone temperature decreases with an increasing feeding rate of the drill bit and increases with an increasing drilling speed of the drill bit. In addition, the necrosis area of bone can be reduced effectively by increasing feeding rate or decreasing the drilling speed of the drill bit. The research results can provide a basis for the selection of operation parameters in performing drilling process.
目 錄
摘要 I
Abstract II
謝誌 IV
目錄 V
表目錄 VIII
圖目錄 IX
第1章 緒論 1
  1.1前言 1
  1.2文獻回顧 2
  1.3組織與章節 3
第2章 問題背景與研究方法 6
  2.1齒槽骨溫升變化之影響 6
  2.2鑽孔過程產生溫升之行為 8
  2.3植牙手術流程 11
第3章 鑽孔過程溫升之實驗量測 13
  3.1實驗設備 13
  3.2實驗步驟 21
  3.3實驗結果 24
    3.3.1豬隻下顎骨實驗結果 24
    3.3.2 深度鑽人工代骨實驗結果 27
    3.3.3 擴孔鑽人工代骨實驗結果 31
第4章 牙鑽鑽孔之有限元素分析 39
  4.1有限元素模型 39
  4.2材料性質與邊界條件 43
  4.3鑽孔參數 47
  4.4有限元素模型驗證 48
    4.4.1深度鑽之有限元素模型驗證 48
    4.4.2擴孔鑽之有限元素模型驗證 55
第5章 結果與討論 60
  5.1豬隻下顎骨與人工代骨之關聯性 60
  5.2骨頭溫升現象之探討 62
  5.3不同深度及徑向距離之骨頭溫度變化 71
  5.4鑽孔參數對骨疽範圍之影響 78
    5.4.1深度鑽鑽孔參數對骨疽範圍之影響 78
    5.4.2擴孔鑽鑽孔參數對骨疽範圍之影響 84
  5.5鑽孔參數對骨頭最高溫度之影響 90
    5.5.1進刀速率對骨頭最高溫度之影響 90
    5.5.2鑽頭轉速對骨頭最高溫度之影響 94
第6章 結論 97
參考文獻 99
作者簡介 103




參考文獻
1. Alberktsson, T., Branemark, P. I., Hansson, H. A. and Lindstrom, J., 1981, “Osteointegrated titanium implants: requirements for ensuring a longlasting, direct bone-to-implant anchorage in man,” Acta Orthopedica Scandinavica, Vol. 52, pp. 155-170.
2. Eriksson, R.A., and Alberksson, T., 1983, “Temperature thereshold levels for heat induced bone tissue injury: a vital microscopic study in rabbit,” Journal of Prosthetic Dentistry, Vol. 50, pp. 101-107.
3. Cotisch, E. R., Youngblood, P. J. and Walden, J. M., 1964, “A study of the effects of high-speed rotatory instruments on bone repair in dogs,” Journal of Oral Surgery, Vol. 17, pp. 563-571.
4. Matthews, L. S. and Hirsch, C., 1972, “Temperatures measured in human cortical bone when drilling,” Journal of Bone & Joint Surgery, Vol. 54, pp. 297-308.
5. Krause, W. R., Bradbury, D. W., Kelly, J. E. and Lunceford, E. M., 1981, “Temperature elevation in orthopedic cutting operations,” Journal of Biomechanical Engineering, Vol. 15, pp. 267-275.
6. Watanabe, F., Tawada, Y., Komatsu, S. and Hata, Y., 1992, “Heat distribution in bone during preparation of implant sites: Heat analysis by real-time thermography,” The International Journal of Oral & Maxillofacial Implants, Vol. 7, pp. 212-219.
7. Mustafa, B., David, F., 1995, “Measurements of Shaft Speed While Drilling Through Bone,” Journal of Oral and Maxillofacial Surgery, Vol. 53, pp. 1308-1315.
8. Abouzgia, M. B., Symington, J. M., 1996, “Effect of drill speed on bone temperature,” Journal of Oral and Maxillofacial Surgery, Vol. 25, pp. 394-399.

9. Brisman, D. L., 1996, “The effect of speed, pressure, and time on bone temperature during the drilling of implant sites,” The International Journal of Oral & Maxillofacial Implants, Vol. 11, pp. 35-37.
10. Benington, I.C., Biagioni, P. A., Crossey, P. J., Hussey, D. L., Sheridan, S. and Lamey, P. J., 1996, “Temperature changes in bovine mandibular bone during implant site preparation: An assessment using infrared thermography,” Journal of Dentistry, Vol. 24, pp. 263-267.
11. Cordioli, G. and Majzoub, Z., 1997, “Heat generation during implant site preparation: An in vitro study,” The International Journal of Oral & Maxillofacial Implants, Vol. 12, pp. 186-193.
12. Tehemar, S., 1999, “Factors Affecting Heat Generation During Implant Site Preparation: A Review of Biologic Observations and Future Considerations,” The International Journal of Oral & Maxillofacial Implants, Vol. 14, pp. 127-136.
13. Sharawy, M., Misch, C. E., Weller, N. and Tehemar, S., 2002, “Heat Generation During Implant Drilling:The Significance of Motor Speed,” Journal of Oral and Maxillofacial Surgery, Vol. 60, pp. 1160-1169.
14. Sean, R. H. and David, F., 2003, “Drilling in Bone:Modeling heat generation and temperature distribution,” Journal of Biomechanical Engineering, Vol. 125, pp. 305-314.
15. Ercoli, C., Paul, D., Lee, H. J. and Mark, E., 2004, “The Influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: A study of drill durability,” The International Journal of Oral & Maxillofacial Implants, Vol. 19, pp. 335-349.
16. Guillermo, E., Daniel, L., Peter, E., Edwin, A.and Michael B., 2006, “Heat Production by 3 Implant Drill Systems After Repeated Drilling and Sterilization,” Journal of Oral and Maxillofacial Surgery, Vol. 64, pp. 265-269.

17. L., S., Matthews, Hirsch, C., 1972, “Temperatures measured in human cortical bone when drilling,” Journal of Bone & Joint Surgery, Vol. 54, pp. 297-308.
18. Tijana, M., Aleksa, M., Aleksandar, T., Snjezana C., Scepanovic M., and Biljana M., 2010, “An in vitro study of temperature changes in type 4 bone during implant placement Bone condensing versus bone drilling,” Journal of Oral Surgery. pp. 1-6.
19. Shetty, V. and Bertolami, C. N., 1992, “The physiology of wound healing,” Journal of Plastic and Reconstructive Surgery, pp. 3-18, JB Lippincott, Philadelphia.
20. Weiss, C. M., 1986, “Tissue integration of dental osseous implants: Description and comparative analysis of the fibro-osseous integration and osseous integration systems,” Journal of Oral Implantology, Vol. 12, pp. 169-214.
21. Ludewig, R., 1972,Temperaturmessungen beim Knochensagen , Thesis, Univ of Gissen, Gissen.
22. Rhinelander, F., Nelson, C. L., Stewart, R. D. and Stewart, C. L., 1979, “Experimental reaming of the proximal femur and acrylic cement implantation. Vascular and histologic effects,” Clinical Orthopaedics and Related Research, Vol. 141, pp. 74-89.
23. Eriksson, R. A., Albrektsson, T., Grane, B. and McQueen, D., 1982, “Thermal injury to bone. A vital microscopic description of heat effects,” International Journal of Oral Surgery, Vol. 1, pp. 115-121.
24. Eriksson, R.A. and Albrektsson, T., 1984, “The effect of heat on bone regeneration: An experimental study in rabbit using the bone growth chamber,” Journal of Oral and Maxillofacial Surgery, Vol. 42, pp. 705-711.
25. Mauch, M., Currey, J. D. and Sedman, A. J., 1992, “ Creep fracture in bones with different stiffness,” Journal of Biomechanics, Vol. 25, pp. 11-16.
26. Rimnac, C. M., Pekto, A. A., Santner, T. J. and Wright, T. M., 1993, “The effect of temperature, stress and microstructure on the creep of compact bovine bone,” Journal of Biomechanics, Vol. 26, pp. 219-228.
27. 趙芝眉,湯銘權,2002, 金屬切削原理,成陽出版社,台北,第133-135頁。
28. 傅光華,1982,切削刀具學,高立圖書,台北,第15-37頁。
29. http://www.straumann.com, Accessed 01 June 2009.
30. Santner , E., Klaffke, D., and Meier zu Kijcker, G., 1995, “Comprehensive tribological characterization of thin TiN-based coatings,” Journal of Wear, Vol. 190, pp. 201-211.
31. Mitsuoa, A., and Aizawab , T., 2002, “Effect of chlorine distribution profiles on tribological properties for chlorine-implanted titanium nitride films,” Journal of Surface & Coatings Technology, Vol. 158-159, pp. 694-698.
32. Tanno, Y., and Azushima, A., 2009, “Effect of counter materials on coefficients of friction of TiN coatings with preferred grain orientations,” Journal of Wear, Vol. 266, pp. 1178-1184.
33. http://www.sawbones.com, Accessed 01 June 2009
34. Baerbel, R., Stefan, N., Susanne, H., Katja, N., 2009, “Miniature pigs as an animal model for implant research : bone regeneration in critical-size defects,” Journal of Oral & Maxillofacial Implants, Vol. 105, No. 5, pp. 699-706.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top