跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍敬順
研究生(外文):Ching-Shun Lan
論文名稱:大豆分離蛋白、米穀粉與澱粉對組織化全脂大豆蛋白品質之影響
論文名稱(外文):Effects of soybean protein isolate, rice flour and starch on the quality of texturized full fat soybean protein
指導教授:林貞信
指導教授(外文):Jenshinn Lin
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:大豆分離蛋白理化性質組織化大豆蛋白米穀粉澱粉
外文關鍵詞:soybean protein isolatesphysicochemical propertiestexturized soybean proteinrice flourstarch
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1119
  • 評分評分:
  • 下載下載:156
  • 收藏至我的研究室書目清單書目收藏:1
本研究分為兩部分,第一部分為進行六種不同來源的大豆分離蛋白(Soybean protein isolates; SPI)的理化性質分析,再分別進行組織化大豆蛋白(Texturized soybean protein; TSP)製作,並探討不同原料製作之組織化大豆蛋白的品質。結果顯示,SPI F具有最高的粗蛋白、水溶性蛋白、球蛋白波峰相對含量與蛋白質分散指數,而SPI A在最終黏度值與SPI A及SPI C乳化能力為最高。各組原料經由擠壓加工後,SPI F有最高的蛋白質分散指數,而SPI E的水分滯留率、SPI B的吸水性指標與SPI A截斷力為最高,在SPI D有最低的蒸煮流失率,再進行相關性分析結果發現,不同來源的SPI在7S與11S球蛋白的相對波峰密度及水溶性蛋白質含量對經擠壓加工後的TSP之理化性質皆有顯著的相關性(p < 0.05),而最終黏度值則只對TSP的截斷力具有顯著正相關性(p < 0.05),然而粗蛋白含量及乳化能力對TSP之理化特性皆無顯著相關性(p > 0.05)。第二部分為探討添加不同含量(5%與10%)之米穀粉〔台中糯70號(TCW70)、台中秈17號(TCS17)與台稉9號(TK9)〕與澱粉(玉米澱粉、高直鏈玉米澱粉與馬鈴薯澱粉)對TSP理化性質之影響。實驗結果顯示,於不同米穀粉中,TCW70具有最高的水分滯留率與吸水性指標,而TK9有最低的蒸煮流失率,於截斷力部分則無顯著差異(p > 0.05)。添加不同澱粉時,馬鈴薯澱粉有較高的水分滯留率,而玉米澱粉具有最大的截斷力與吸水性指標,且蒸煮流失率最低。電子顯微鏡觀察結果可看出添加澱粉之TSP的膨脹情形較添加米穀粉更為明顯,其中以馬鈴薯澱粉最為明顯。

There were two parts in this study. The first part was that six soybean protein isolates (SPI) were analyzed for their physicochemical properties, and were used as the raw materials in texturized soybean protein (TSP) extrusion for their quality. According to the results, SPI F had the highest crude protein, water soluble protein, globulin protein and protein dispersibility index, whereas SPI A had the highest final viscosity, SPI A and SPI C had higher emulsifying capacity. Results of the extrusion processing of different materials, SPI F had the highest protein dispersibility index. SPI E, SPI B, and SPI A had the highest moisture retention, water absorption index, cutting force, respectively. SPI D had the lowest cooking loss. The correlation analysis showed, the relative peak density and the contents of water soluble protein of 7S and 11S globulin from all the different source of SPI had the significant correlation (p > 0.05) with the properties of TSP after extrusion, while that of final viscosity had the correlation only with cutting force of TSP. However, the contents of crude protein and emulsifying capacity showed no significant correlation (p > 0.05) with the properties of TSP. The second part of the investigate was to study the effects of physicochemical properties on TSP by adding the different rice flour〔Taichung Waxy 70 (TCW70), Taichung Sen 17 (TCS17) and Tai Keng 9 (TK9)〕or starch(corn starch, high amylose maize starch and potato starch). The results revealed TCW70 had the highest moisture retention and water absorption index among the rice flour, while that of TK9 had the lowest cooking loss. However, no significant difference(p > 0.05)in cutting force, by adding different rice flour. As to the adding of starch, the potato starch had the highest moisture retention, while that of corn starch had the best cutting force, cooking loss and water absorption index. The SEM observation part, the expansion of TSP after adding with starch was much obvious than that of adding with rice flour, particularly with potato starch.

摘要 I
Abstract III
目錄 VI
圖表目錄 XI
第1章 前言 1
第2章 文獻回顧 3
2.1擠壓技術 3
2.1.1 擠壓技術簡介 3
2.1.2 擠壓技術的優點 3
2.2組織化大豆蛋白 5
2.3大豆 8
2.3.1 大豆簡介 8
2.3.2 大豆營養特性 8
2.4大豆加工原料 12
2.4.1全脂大豆粉(FFSF) 12
2.4.2脫脂大豆粉(DSF) 12
2.4.3大豆濃縮蛋白(SPC) 15
2.4.4大豆分離蛋白(SPI) 15
2.5大豆蛋白 15
2.5.1大豆球蛋白 15
2.5.2大豆蛋白質特性 21
2.6澱粉簡介 24
2.6.1澱粉顆粒與組成 24
2.6.2澱粉糊化與回凝 27
2.7稻米 29
2.7.1稻米類型 29
2.7.2稻米結構 29
第3章 材料與方法 30
3.1實驗設計 30
3.2實驗原料 33
3.3 實驗設備 34
3.4 組織化大豆蛋白 36
3.4.1 米穀粉製備 36
3.4.2 組織化大豆蛋白原料配製 36
3.4.3 組織化大豆蛋白擠壓加工之流程 37
3.4.4 組織化大豆蛋白成品收集 37
3.4.5 組織化大豆蛋白粉末製備 37
3.5 理化性質分析 37
3.5.1粗蛋白含量測定 37
3.5.2水溶性蛋白萃取 38
3.5.3水溶性蛋白含量分析 38
3.5.4聚丙烯醯胺凝膠電泳 38
3.5.5快速黏度儀分析 40
3.5.6乳化物的製備 40
3.5.7乳化能力的測定 40
3.5.8蛋白質溶解指數 41
3.5.9水分滯留率測定 41
3.5.10吸水性指標 42
3.5.11蒸煮流失率 42
3.5.12截斷力 42
3.5.13掃瞄式電子顯微鏡觀察 43
3.6實驗數據分析 43
第4章 結果與討論 44
4.1不同來源大豆分離蛋白原料分析 44
4.1.1粗蛋白與水溶性蛋白含量 44
4.1.2 SDS-PAGE球蛋白含量測定 46
4.1.3快速黏度分析 49
4.1.4乳化能力 52
4.1.5油滴顆粒大小及分佈情形 54
4.2不同來源大豆分離蛋白製作成組織化大豆蛋白之分析 56
4.2.1蛋白質分散指數 56
4.2.2水分滯留率 59
4.2.3吸水性指標 61
4.2.4蒸煮流失率 63
4.2.5截斷力 65
4.3六種大豆分離蛋白生原料與組織化大豆蛋白理化特性相關
性分析 67
4.4添加不同米穀粉與澱粉製作成組織化大豆蛋白之分析 69
4.4.1水分滯留率 69
4.4.2吸水性指標 72
4.4.3蒸煮流失率 75
4.4.4截斷力 78
4.4.5掃描式電子顯微鏡之觀察 81
第5章 結論與建議 86
參考文獻 88

中華民國國家標準。2007。稻米詞彙。CNS 總號13446,類號N1126。經濟部中央標準局。台北。
王怡晶。1999。蛋白質於擠壓加工之變化。食品工業。31(7):20-30。
李添根。1993。單離黃豆蛋白最適擠壓條件之決定與高比例黃豆11S球蛋白複合擠物之物化性質。國立台灣海洋大學水產食品科學研究所碩士論文。
林育德、彭錦樵、林貞信、蕭世傑。1998。模孔形狀、進料速率及螺軸轉速對擠壓產品理化特性之影響。農林學報 47(4):25-35。
施明智、江文章。1992。擠壓加工條件對以玉米為基材的擠壓半成品物化特性之影響。中國農業化學會誌。30(3):454-61。
高崇烈。林貞信。1999。螺軸轉速、進料含水率和玉米澱粉添加量對擠壓米粉絲膨發特性和強度的影響。食品科學 26(4): 411-22。
高毓茹。2009。熱和酵素處理對市售大豆蛋白泡沫與其他功能特性分析。實踐大學食品營養與保健生技研究所碩士論文。
許家源。2008。高壓高剪力處理對米穀粉理化特性及其膠體質地之影響。輔仁大學食品科學系碩士論文。
陳秀瑩。2002。大豆之機能性成份與其分析方法。食品工業 34(18): 18-26。
陳怡德。2005。不同擠壓加工對組織化植物蛋白理化性質之研究。國立屏東科技大學食品科學系碩士論文。
陳家全、李家維、楊瑞森。1991。生物電子顯微鏡學。行政院國家科學委員會精密儀器發展中心出版。
陳嘉昌。1994。冷卻模口長度與化學添加劑對組織化黃豆分離蛋白擠壓物之鍵結、物化特性的影響。國立台灣海洋大學水產食品科學研究所碩士論文。
郭昭吟。2006。擠壓塊狀年糕之物化性質與最適二次加工條件之探討。國立屏東科技大學食品科學系碩士學位論文。
黃國書。2007。加工製程對組織化大豆蛋白內異黃酮含量的影響。國立屏東科技大學食品科學系碩士論文。
馮培格。2009。添加大豆萃取物粉對組織化大豆蛋白物理與機能性質之影響。國立屏東科技大學食品科學系碩士論文。
蔡元卿、謝宗涵、陳映伶、彭雅涓、邢禹依、謝兆樞。2006。利用種子蛋白電泳及西方墨點分析進行大豆屬物種分群之研究。作物、環境與生物資訊 3(2):159-76。
蔡育真。2002。直立式單軸擠壓機製作薄片狀組織化植物蛋白產品之研究。國立屏東科技大學食品科學研究所碩士學位論文。
楊仁輝。1999。不同粒徑範圍之米穀粉流變性質之探討。靜宜大學食品營養系碩士論文。
盧訓、郭封谷。1991。乳化劑和澱粉對東方式麵條品質之影響。食品科學。18(4):313-23。
簡銘維。2010。以擠壓蒸煮方式製備糕仔用預糊化米穀粉之研究。國立屏東科技大學食品科學系碩士論文。
闞建全。2006。食品化學。新文京開發股份有限公司。台北。pp.195
A.A.C.C 2000. American Association of Cereal Chemists Approved Methods, 10th ed. The Association: St. Paul, MN.
A.O.A.C 1984. Official Methods of Analysis. 13th ed. Association of Official Analytical Chemists. Washington, D.C.
Atwell WA, Hood LF, Lineback DR, Varriano ME, Zobel HF. 1988. The terminology and methodology associated with basic starch phenomena. Cereal Food World 33: 310-1.
Badley RA, Atkinson D, Hauser H, Oldani D, Green JP, Stubbs JM. 1975. The structure, physical and chemical properties of the soybean protein glycinin. Biochem Biophys Acta 412: 214-28.
Ball S, Guan HP, James M, Myers A, Keeling P, Mouille G, Buléon A, Colonna P, Preiss J. 1996. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86: 349-52.
Barać MB, Stanojevic SP, Jovanovic ST, Pešic MB. 2004. Soybean protein modification- a review. Acta Periodica Technological 35: 3-16.
BeMiller JN. 1996. Whistler, R.L. Carbohydrates. In Food Chemistry, 3rd Edition, Food Science and Technology 76; Fenema OR, Ed.; Marcel Dekker, Inc.: New York, pp.157-223.
Blazek V. 2008. Use of RVATM to assess the quality of soybean protein. The technical tournal of Newport scientific ISSN 1449-311.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 248-54.
Buléon A, Colonna P, Planchot V, Ball S. 1998. Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules 23: 85-112.
Bushuk W. 2001. History, world distribution, production, and marketing. In Rye: Production, Chemistry, and Technology, 2nd Ed.; Bushuk W, Ed.; American Association of Cereal Chemists: St. Paul, pp.1-7.
Case SE, Capitani T, Whaley JK, Shi YC, Trzasko P, Jeffcoat R, Goldfarb HB. 1998. Physical properties and gelation behavior of a low-amylopectin maize starch and other high-amylose maize starches. Journal of Cereal Science 27: 301-14.
Catsimpoolas N, Meyer EW. 1970. Gelation Phenomena of Soybean Globulins. I. Protein-Protein Interactions, Journal of the American Oil Chemists’ Society 47: 559-70.
Chove BE, Grandison AS, Lewis MJ. 2007. Some functional properties of fractionated soy protein isolates obtained by microfiltration. Food Hydrocolloids 21: 1379-88.
Deak NA, Johnson LA. 2007. Effects of extraction temperature and preservation method on functionality of soy protein. Journal of the American Oil Chemists’ Society 84: 259-68.
Derbyshire E, Wright DJ, Boulter D. 1976. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry 15: 3-24.
Dona AC, Pages G, Gilbert RG, Kuchel PW. 2010. Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate Polymers 80: 599-617.
Dziezak JD. 1989. Single- and twin-screw extruders in food processing. Food Technology 43: 164-74.
Dziedzic SZ, Kearsley MW. 1995. The technology of starch production. In Handbook of Starch Hydrolysis Products and their Derivatives; Kearsley MW, Dziedzic SZ, Eds.; Blackie Academic & Professional: Glasgow, pp.1-25.
FDA. 1999. Food labeling health claims: soy protein and coronary heart disease, final rule, Fed Reg 64: 57700-33. US Food and Drug Administration, Washington, DC.
Galliard T. 1987. Starch availability and utilization. In Starch: Properties and Potential. Galliard T, Ed.; John Wiley & Sons: Chichester, pp.1-15.
Galliard T, Bowler P. 1987. Morphology and composition of starch. In T. Galliard (Ed.), Starch properties and potential pp. 57-78. Chichester: Wiley.
Garcìa MC, Torre M, Marina ML, Laborda F. 1997. Composition and characterization of soybean and related products. Critical Reviews in Food Science and Nutrition 37: 361-91.
Gomez MH and Agurilera MJ. 1983. Changes in the starch fraction during extrusion-cooking of corn. Journal of Food Science 48: 378-82.
Harper JM.1981. Extrusion of food. Vol I. CRC Press, Inc., Boca Raton, FL. USA.
Hawley RL, Frederiksen CW, Hoer RA. 1972. Method of Treating Vegetable Protein. Patent 3, 642, 490, February 15, USA.
Hill SE. 1996. Emulsions, in Methods of Testing Protein Functionality, edited by G.M. Hall, Blackie Academic & Professional, an imprint of Chapman & Hall, London, pp. 153-85.
Hizukuri S. 1986. Polymodal distribution of the chain lengths of amylopectins and it significance. Carbohydrate Research 147: 342-7.
Hizukuri S, Kaneko T, Takeda Y. 1983. Measurement of the chain length of amylopectin and its relevance to origin of crystalline polymorphism of starch granules. Biochimica et Biophysica Acta 760: 188-91.
Hizukuri S, Takeda Y, Yasuda M. 1981. Multi-branched nature of amylose and the action of debranching enzymes. Carbohydrate Research 94: 205-13.
Iwe MO, Zuilichem DJ, Ngoddy PO, Lammers W. 2001. Amino Acid and Protein Dispersibility Index (PDI) of Mixtures of Extruded Soy and Sweet Potato Flours. Lebensmittel-Wissenschaft und-Technologie 34: 71-5.
Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. 1999. Effects of amylopectin branch chain-length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry 76: 629-37.
Juliano BO, Bechtel DB. 1985. The rice grain and its gross composition. In: Juliano BO, editor. Rice: chemistry and technology. 2nd ed. St. Paul, MN: Assoc Cereal Chem. pp.16-74.
Kaletung G. 2003. Characterization of Cereals and Flours. Marcel Dekker Press, Madison Avenue, New York, USA.
Kinsella JE. 1979. Functional Properties of Soy Proteins, Journal of the American Oil Chemists’ Society 56: 242-58.
Kinsella JE, Whitehead DM, Brady J, Bringe NA. 1989. Milk Proteins: Possible Relationships of Structure and Function, in Developments in Dairy Chemistry 4. Functional Milk Proteins, edited by P.F. Fox, Elsevier Applied Science, London, pp. 55-95.
Kneifel W, Paquin P, Abert T, Richard JP. 1991. Water-Holding Capacity of Proteins with Special Regard to Milk Proteins and Methodological Aspects-A Review. Journal of Dairy Science 74: 2027-41.
Knutz ID. 1971. Hydration of Macromolecules: III. Hydration of Polypeptides. Journal of the American Chemical Society 93: 514-6.
Larsson K. 1982. Some effects of lipids on the structure of food. Food microstructure. Vol. I pp. 52-62.
Liu C, Wang H, Cui Z, He X, Wang X, Zeng X, Ma H. 2007. Optimization of extraction and isolation for 11S and 7S globulins of soybean seed storage protein. Food Chemistry 102: 1310-6.
Liu K. 1999. Soybeans: Chemistry, Technology and Utilization. Aspen Publishers, Gaithersburg, Maryland, USA.
Liu K. 2004. Soybeans as Functional Foods and Ingredients. AOCS Press, Missouri, USA.
Loh J, Breene WM. 1977. Texture analysis of textured soy protein products: relations between instrumental and sensory evaluation. Journal of Texture Studies 7: 405-19.
Lu S, Luh BS. 1991. Properties of rice caryopsis. In: Luh BS, editor. Rice: production. 1st ed. St. Paul, MN: Am Assoc Cereal Chem. pp.389-419.
Luthria DL, Biswas B, Natarajan S. 2007. Comparison of extractions solvents and techniques used for the assay of isoflavones from soybean. Food Chemistry 105: 325-33.
Messini MJ, Barnes S. 1991. The role of soy products in reducing risk of cancer . Journal of the National Cancer Institute 83: 541-6.
Miles MJ, Morris VJ, Ring SG, Orford PD. 1985. The roles of amylase and amylopectin in the gelation and retrogration of starch. Carbohydrate Research 135: 271-81.
Molina E, Papadopoulou A, Ledward DA. 2001. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids 15: 263-9.
Molina Ortiz SE, Sánchez CC, Niñ MRR, Añon MC, Juan M. Patino R. 2003. Structural characterization and surface activity of spread and adsorbed soy globulin films at equilibrium. Colloids and Surfaces B: Biointerfaces 32: 57-67.
Mujoo R, Trinh DT, Perry KWN. 2003. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chemistry 82: 265-73.
Nakamura T, Utsumi S, Mori T. 1985. Effects of temperature on the different stages in thermal gelling of glycinin. Journal of Agricultural and Food Chemistry 33: 1201-3.
Nakamura R. 1995. Molecular science of functional properties of food protein. Nippon Shokuhin Kaishi 42: 720-6.
Pizones V, Carrera C, Yust MM, Pedroche JJ, Millán F, Rodríguez PJM. 2007. Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects 309: 202-15.
Potter SM. 1995. Overview of proposed mechanisms for the hypocholesterolemic effect of soy. Journal of Nutrition 125: 606-11.
Poysa V, Woodrow L, Yu K. 2006. Effect of soy protein subunit composition on tofu quality. Food Research International 39: 309-17.
Riaz MN. 2000. Extruders in Food Applications. Vol I. CRC Press, Inc., Boca Raton, FL.USA.
Riaz MN. 2006. Soy Applications in Food. CRC Press, Boca Raton London, New York, USA. pp.10-1.
Russell PL. 1987. The ageing of gels from starches of different amylose/amylopectin content studied by differential scanning calorimetry. Journal of Cereal Science 6:147-58.
Sarko A, Wu HCH. 1978. The crystal structures of A-, B-, and C-polymorphs of amylose and starch. Starch-Stärke 30: 73-83.
Shen JL. 1981. Solubility and Viscosity, in Protein Functionality in Foods, edited by Cherry JP, ACS Symposium Series 147, American Chemical Society, Washington, D.C., pp. 89-109.
Shirani G, Ganesharanee R. 2009. Extruded products with Fenugreek (Trigonella foenum-graecium) chickpea and rice: Physical properties, sensory acceptability and glycaemic index. Journal of Food Engineering 90: 44-52.
Sidebottom C, Kirkland M, Strongitharm B, Jeffcoat R. 1998. Characterization of the difference of starch branching enzyme activities in normal and low-amylopectin maize during kernel development. Journal of Cereal Science 27: 279-87.
Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry 81: 219-31.
Smith OB. 1969. History and status of specific protein-rich foods: extrusion-processed cereal foods. In: Protein-Enriched Cereal Foods for World Needs. M. Milner, ed. American Association of Cereal Chemists, St. Paul, MN, pp. 140-153.
Smith OB. 1971. Why use extrusion. Symposium on Extrusion: Process and Product Development. American Association of Cereal Chemists. St. Paul, MN.
Snyder HE, Kwon TW. 1987. Soybean Utilization. New York: Van Nostrand Reinhold, pp. 74-144.
Sosulski FW, Bakal A. 1969. Isolated proteins from rapeseed, flax and sunflower meals. Canadian Institute of Food Science and Technology Journal 2: 28-32.
Takeda Y, Hizukuri S. 1987. Structure of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohydrate Research 165: 139-46.
Takeda Y, Shirasaka K, Hizukuri S. 1984. Examination of the purity and structure of amylose by gel-permeation chromatography. Carbohydrate Research 132: 83-92.
Tay SL, Xu GQ, Perera CO. 2005. Aggregation profile of 11S, 7S and 2S coagulated with GDL. Food Chemistry 91: 457-62.
Thanh VH, Shibasaki K. 1978. Major proteins of soybean seeds: Subunit structure of β-conglycinin. Journal of Agricultural and Food Chemistry 26: 692-8.
Turner NE, Bason ML, Sleigh RW, Fahmy F. 1996. Assessing soybean quality for tofu production using the Rapid Visco Analyser, in Milton Jaeger and Judith Andrews (eds), Proceedings of 9th Australian Soybean Conference 'Soybeans: The Future', 10-12 September 1996, LeetonSoldiers' Club, NSW Agriculture, Yanco NSW, pp.124-8.
Tzia C. 2003. Extraction Optimization in Food Engineering. Marcel Dekker Publishers, New York, USA.
Utsumi S, Inaba H, Mori T. 1981.Heterogeneity of soybean glycinin. Phytochemistry 20: 585-9.
Utsumi S, Kinsella JE. 1985. Forces involved in soy protein gelation: Effects of various reagents on the formation, hardness, and solubility of heat-induced gels made from 7S, 11S, and soy isolate. Journal of Food Science 50: 1278-82.
Utsumi S, Kinsella JE. 1985. Structure-function relationship in food proteins: Subunit interactions in heat-induced gelation of 7S, 11S and soy isolate proteins. Journal of Agricultural Food Chemistry 33: 297-303.
Vandeputte GE, Delcour JA. 2004. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydrate Polymers 58: 245-66.
Vandeputte GE, Derycke V, Geeroms J, Delcour JA. 2003. Rice starches. II. Structural aspects provide insight into swelling and pasting properties. Journal of Cereal Science 38: 53-9.
Wanishi RD, Shety JK, Kinsella JE. 1981. Protein-stabilize emulsions: Effects of modification on the emulsifying activity of bovine serum albumin in a model system. Journal of Agricultural and Food Chemistry 29: 826-31.
Whistler RL. 1984. History and future expectation of starch use. In Starch, Chemistry and Technology, 2nd Ed.; Whistler RL, BeMiller JN, Paschall, E.F., Eds.; Academic Press: New York, pp.1-9.
Wolf WJ. 1970. Soy proteins: their functional, chemical, and physical properties. Journal of Agricultural and Food Chemistry 18: 969-76.
Wolf W, Cowan JC. 1975. Soybeans as food socure. CRC Press. Clevelan, Ohio. p27.
Xie F, Yu L, Su B, Liu P, Wang J, Liu H, Chen L. 2009. Rheological properties of starches with different amylose/amylopectin ratios. Journal of Cereal Science 49: 371-7.
Yasumatsu K, Sawada K, Moritaka S, Misaki M, Toda J, Wada T, Ishii K. 1972. Whipping and emulsifying properties of soybean products. Agricultural and Biological Chemistry 36: 719-27.
Yoo SH, Jane J. 2002. Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multiangle laser light scattering and refractive index detection. Carbohydrate Research 49: 307-14.
Yuan RC, Thompson DB, Boyer CD. 1993. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines. Cereal Chemistry 70: 81-9.
Zhu LJ, Shukri R, Mesa-Stonestreet NJ, Alavi S, Dogan H, Shi YC. 2010. Mechanical and microstructural properties of soy protein – high amylose corn starch extrudates in relation to physiochemical changes of starch during extrusion. Journal of Food Engineering 100: 232-8.
Ziegler GR, Foegeding EA. 1990. The Gelation of Proteins. Advances in Food and Nutrition Research 34: 203-98.
Zobel HF. 1988. Starch crystal transformations and their industrial importance, Starch-Stärke 40: 1-7.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top