跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林雅茹
研究生(外文):Ya-Ju Lin
論文名稱:應用水質模式研擬東港溪流域之水質管理策略
論文名稱(外文):Application of Water Quality Model on the Planning of Management Strategies for the Tungkang River
指導教授:黃益助
指導教授(外文):Yi-Chu Huang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:134
中文關鍵詞:東港溪涵容能力削減量河川水質指數
外文關鍵詞:QUAL2KTungkang Riverassimilative capacitypollution reductionwater quality index
相關次數:
  • 被引用被引用:23
  • 點閱點閱:1004
  • 評分評分:
  • 下載下載:180
  • 收藏至我的研究室書目清單書目收藏:0
東港溪流域為高屏地區主要河川之一,依據先期研究之污染源分析,東港溪各類廢水污染量分析,生化需氧量(biochemical oxygen demand, BOD)排放量方面,以畜牧廢水最多(66.66%)、生活污水次之(31.30%)、事業廢水居末(2.04%);氨氮(ammonia nitrogen, NH3-N)排放量方面,以畜牧廢水最多(74.83%)、生活污水次之(25.17%);懸浮固體(suspended solids, SS)排放量方面,以畜牧廢水最多(70.72%)、生活污水次之(27.40%)、事業廢水居末(1.88%),因此畜牧廢水為東港溪流域最主要之污染來源。
由於東港溪常年水量充沛穩定,目前港西抽水站為鳳山水庫水源之一,主要提供工業用水,為了舒緩南部地區之缺水問題,本研究主要針對東港溪流域進行河川污染調查、分析及推估,以掌握河川污染之來源及污染量,並以港西抽水站作為水質改善指標測站,以水質模式模擬,進行流域內污染負荷改善措施之成效評估。
本研究以東港溪為主要研究對象,利用The enhanced stream water quality model (QUAL2K)水質模式模擬不同水污染防治方案後之河川水質狀況,以港西抽水站河段可符合乙類水體水質標準作為河川水體水質改善目標,並以BOD、NH3-N及SS三項水質參數之改善作為研擬污染管理策略之目標,再評估模式模擬策略之適用性。模式參數設定值之祛氧係數(deoxygenation rate, K1) (0.2-0.4 day-1)、再曝氣係數 (reaeration coefficient, K2) (0.78-6 day-1)、硝化係數(nitrification rate, Kn) (0.05-0.1day-1)
及底泥耗氧量(sediment oxygen demand, SOD) (0.37-3.2 g O2 m-2 day-1)採用實測數據,而延散係數與SS沉降速率則參考文獻資料南部河川設定範圍值進行率定。依據涵容能力及污染削減量分析結果得知,東港溪流域之SS、BOD與NH3-N流域總削減率至少需達6.7%、53.8%、75.6%才能使港西抽水站以上各河段皆可符合乙類水體水質目標。
本研究模擬結果顯示,削減策略以污水截流措施90%截流後,除NH3-N尚需削減31%,SS與BOD已可達乙類水體水質目標。潔淨養豬以100%之改善效果較佳,BOD及NH3-N總削減率至少需達12%、9%才可達到乙類目標水體水質。综合削減策略以加強管制、污水截流50%和潔淨養豬75%之水質提升較明顯,除NH3-N,BOD與SS皆可達乙類目標水體水質。以飲用水水源水質標準作為改善目標時,加強管制或納入內埔、萬巒和潮州系統,其流域NH3-N總削減率則分別尚需削減6%和12%才能達到目標水體水質。
東港溪流域各支流整體河川水質指數(Water Quality Index, WQI)提升率以潔淨養豬100%較明顯;综合改善策略則以搭配污水截流50%和潔淨養豬75%之提升率較高,其餘措施變化不大。主流測站經污水截流90%或潔淨養豬100%或搭配加強管制、污水截流50%,與潔淨養豬50%,可使五魁橋、興社大橋、港東二號橋及港西抽水站水質由Class IV提升為Class III。本研究結果可用來預測各削減策略對東港溪流域水質之改善成效,亦可提供未來水質管理與污染管制之參考。

The Tungkang River is one of the major rivers in Kaohsiung and Pingtung areas. Previous studies for analysis on various types of wastewater pollution loads in the Tungkang River have indicated that the order of the amount of waste discharge was pasturage (66.66%), municipal (31.30%), and industrial (2.04%) wastewater for biochemical oxygen demand (BOD), pasturage (74.83%) and municipal (25.17%) wastewater for ammonia nitrogen (NH3-N) and pasturage (70.72%), municipal (27.40%), and industrial (1.88%) wastewater for suspended solids (SS), respectively. Therefore, pasturage wastewater had been identified as the major source of pollution in the Tungkang River.
The annual flow of Tungkang River is abundant and stable. Water pumping from the Gangci Pumping Station is one of the water sources of the Fongshan Reservoir for industrial purposes. For smoothing the water shortage problem of southern region, this study mainly aims at the investigation of river pollution to analyze and estimate to master the source and amount of pollution for the Tungkang River. The Gangci Pumping Station was selected as a station index for water quality improvement. The measures for improvement of pollution loading were evaluated by the water quality model.
This study utilizes the enhanced stream water quality (QUAL2K) model as a tool to simulate and forecast the water quality of various pollution control measures and then to develop the management strategies to meet the restoration goals of Class B water quality standards regulated at the Gangci Pumping Station of Tungkang River. The improvement measures to the effects of the parameters of BOD, NH3-N and SS were used to draw up the targets of the strategies of pollution control, and then evaluated the applicability of model simulation. The model parameter values of the deoxygenation rate (K1) of 0.2-0.4 day-1, reaeration coefficient (K2) of 0.78-6 day-1, nitrification rate (Kn) of 0.05-0.1day-1, and sediment oxygen demand (SOD) of 0.37-3.2 g O2 m-2 day-1 were measured in-situ, while the dispersion coefficient and SS sedimentation rates used adopted the values listed in the literatures focused on the southern river of Taiwan. According to the analysis of assimilative capacity and pollution reduction, the reduction ratios of SS, BOD and NH3-N should at least reach to 6.7%, 53.8% and 75.6% respectively to meet the restoration goals of Class B water quality standards regulated for the reaches above the Gangci Pumping Station.
The simulation results indicate that reduction strategies for sewage interception 90%, SS and BOD have reached Class B water quality standards regulated but NH3-N still needs to cut down 31%. The improvement effect of water quality is better for 100% of measures of clean pig farming, the total reduction ratios of BOD and NH3-N at least need to decrease 12% and 9% respectively to achieve Class B water quality standards regulated. The improvement of water quality for integrated reduction strategies of inspection enforcement, sewage interception 50% and clean pig farming 75% was better, BOD and SS could achieve Class B water quality standards regulated except NH3-N. If the water quality standard for source of drinking water was used as a goal, NH3-N should at least cut down 6% and 12% for the reduction strategies of inspection enforcement or construction of sewage systems of Neipu, Wanluan, Chaozhou respectively to meet the restoration goals.
The overall river water quality index (WQI) for the tributaries of the Tungkang River was significantly raised for clean pig farming 100%. The improvement ratios of WQI for integrated reduction strategies of sewage interception 50% and clean pig farming 75% was higher, while other improvement measures had little effect. With reduction strategies of sewage interception 90% or clean pig farming 100% or inspection enforcement, sewage interception 50% and clean pig farming 50%, the water quality of the Wukuei Bridge, Singshe Bridge, Kangtung Bridge and Gangci Pumping Station along the main stream upgraded from Class IV to Class III. The results of this study can be employed to estimate the improvement effects of water quality for various reduction strategies in the Tungkang River and can also provide a reference for water quality management and pollution control in the future.

封面
中文摘要
英文摘要
謝誌
目錄
表目錄
圖目錄
第1章
第2章
第3章
第4章
第5章
參考文獻
作者簡介
附錄
王善賢,2000,台灣地區河川水質狀態指標之建立,碩士論文,台灣國立大學,環境工程研究所,台北。
王維申,2008,水質水理模式整合應用於水質模擬之研究,碩士論文,明志科技大學,生化工程研究所,台北。
行政院環保署,2007,中央管河川劃定水區訂定水體分類檢討計畫,台北。
行政院研究發展考核委員會,2002,我國流域管理之研析,台北。
行政院環保署,2011,河川污染管制方案,台北。
行政院環保署,2009,南部地區河川污染整治推動、輔導及評析計劃,台北。
行政院環保署,2010,東港溪流域水質改善檢討及综合規劃計畫,台北。
行政院環保署,2009,環境水質監測年報:河川水質篇,台北。
吳芳池,2003,河川流域管理- WASP 水質模式評估愛河之整治方案,碩士論文,國立中山大學,環境工程研究所,高雄。
林志恩,2010,河川水質及底泥管理策略之研究,博士論文,國立中山大學,環境工程研究所,高雄。
邱智慧,2006,徵收水污染防治費對河川水質之影響,碩士論文,國立台灣大學,環境工程學研究所,台北。
周建成,1990,台灣河川水質指數之建立,碩士論文,國立成功大學,環工所,台南。
柳孟宏,2007,QUAL2K模式應用於河川水質管理-以筏子溪為例-,環境與管理研究,第八卷,第二期,第89-113頁。
宜蘭縣環保局,2010,宜蘭縣流域及水污染源稽查管制計畫-河川小常識網站,宜蘭。
屏東縣環保局,2010,屏東縣河川水質監測計畫期末報告,屏東。
屏東縣環保局,2005,東港溪流域「隴東橋」及「潮州大橋」、高屏溪「里港大橋」測站水質整體改善規劃及細部設計計畫,屏東。
陳永森、陳章波,2000,「臺灣水資源環境空間永續利用」,環境資訊網絡電子報,社團法人台灣環境資訊協會。
陳函馨,2002,以系統動力學建立感潮河川水理與水質模式,碩士論文,國立中山大學,海洋環境及工程學系研究所,高雄。
陳貞樺,2006,應用QUAL2K模式分析北港溪水質之研究,碩士論文,國立中興大學,水土保持學系所,台中。
陳榮凱,2007,以QUAL2K水質模式模擬狹長型人工濕地之研究,碩士論文,國立高雄第一科技大學,環境與工程衛生工程系,高雄。
陳隆政,2004,我國水利組織再造之探討-以經濟部水利署為例,碩士論文,世新大學管理學院,行政管理學系,台北。
張良平,2003,以河濱溼地特性探討生態治河-東港溪為例,碩士論文,國立屏東科技大學,土木工程系碩士班,屏東。
張婉婷,2005,東港溪水體之生物毒性效應評估與探討,碩士論文,大仁科技大學,環境管理研究所,屏東。
張鈞凱a,2005,大漢溪流域污染調查與削減策略評估,碩士論文,國立台灣大學,環境工程學研究所,台北。
張鈞凱b,2005,利用QUAL2K模擬河川廊道上之水稻田對水質之影響-以三峽為例,水稻田農業多樣性機能研討會,台中。
郭鳳茹,2006,東港溪水生生態風險評估,碩士論文,國立高雄師範大學,生物科技系,高雄。
黃日昇,2009,應用QUAL2K建立高屏溪及東港溪河川水質模式與管理策略之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
黃聖授,2001,高屏溪涵容能力之評估,碩士論文,國立中山大學,環境工程研究所,高雄。
黃騰毅,2005,QUAL2K運用於淡水河系用戶接管最適化配當之研究,碩士論文,國立聯合大學,環境與安全衛生工程學系,苗栗。
廖俊強,2007,QUAL2K於舊濁水溪水污染防治之應用,碩士論文,逢甲大學,水利工程與資源保育研究所,台中。
章瑜蓓,2004,二維水質模式之參數校正,碩士論文,國立中央大學,水文科學研究所,桃園。
葉世鏞,2010,河川污染負荷與環境因子相關性之研究,碩士論文,逢甲大學,水利工程與資源保育研究所,台中。
經濟部水利署第七河川局,2008,東港溪整治綱要(修正計劃)規劃-水質改善,屏東。
經濟部水利署第七河川局,2010,東港溪-經濟部水利署第七河川全球資訊網,屏東。
劉心,2006,東港溪流域河川棲地之調查研究,碩士論文,國立屏東科技大學,土木工程系碩士班,屏東。
劉醇慶,2006,利用QUAL2K 探討蘭陽溪氮鹽削減之影響,碩士論文,國立東華大學,環境政策研究所,花蓮。
翁煥廷,2010,探討「水源保護區河川污染水質指標」之應用問題,桃園縣大學校院產業環保技術服務團,環保簡訊第6期。
歐陽嶠暉,徐玉標,溫清光,徐祟仁,陳伯中,曾迪華,余志達,萬騰州,1990,河川分類水質指標及河川污染指標之檢討,行政院環保署。
蔡欲春,2001,台灣地區營造工程物價指數預測之研究-以類神經網路與ARIMA模式,碩士論文,輔仁大學,應用統計學研究所,台北。
經濟部水利署,2008,東港溪流域中上游段治理規劃檢討,台北。
經濟部水利署,2008,東港溪整治綱要(修正計劃)規劃-水質改善,台北。
Bosley, J.R., Cibulka J.J., and Krutchkoff R.G., 1969, Temperature and Turbulance Effects on the Parameter △In the Stochastic Model for BOD and DO in Streams. Water Resources Research Center Library, US.
Brown, R. M., Cleland, M., Deininger, N.I., and Tozer, R.G., 1970, A Water Quality Index Do We Dare? Water Sewage Wks. Vol. 117, pp. 339-343.
Chapra, S.C., and Pelletier, G.J., 2006, QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality: Documentation and Users Manual, Civil and Environmental Engineering Dept., Tufts University, Medford, MA.
Cho, J.H., Sung, K.S., and Ha, S.R., 2004, A river water quality management model for optimising regionalwastewater treatment using a genetic algorithm, Journal of Environmental Management, Vol. 73, pp. 229-242.
Chow, V.T., Maidment, D.R., and Mays, L.W. 1988. Applied Hydrology. New York, McGraw-Hill, pp. 592.
Delurgio, S., 1998, Forecasting Principles and Applications, McGraw-Hill, New Jersey.
Fan, C., Ko, C.H., and Wang W.S., 2009, An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on River Water quality simulation, Journal of Environmental Management, Vol. 90, pp. 1827-1832.
Fang, X.B., Zhang J.Y., and Chen W., 2007, Assimilative capacity of the Qiantang River watershed based on a QUAL2K model, Acts Scientiae Circumstantiae, Vol. 27, pp.1402-1407.
Hong H.S., Wan G.W., Zhan G.Y., 2006, Brief Study on Ecological and Environmental Water Requirement of Jiulong River Watershed, Journal of Xiamen University, Vol.45, pp.819-823.
House M. A., Ellis J. B., 1989, Water A Quality Inditional Management Tool?, Progress in Water Technology, Vol. 13, pp. 413-423.
Hantush, M.M., 2007, Modeling nitrogen-carbon cycling and oxygen consumption in bottom sediment. Adv. Water Resour., Vol. 30, pp. 59-79.
Horton, R.K., 1965, An index number system for rating water quality, Journal of Water Pollution Control Fed. Vol. 37, pp. 300-305.
Linfield, W.M., Serota, S., and Sivieri, L., 1985, Lipidlipase interaction, a new method for the assay of lipase activity, J. Amer. Oil Chem. Soc., 62, pp 1152-1154.
Ma, W., Luo, W.S., Zhang, J.C., 2000, Interrelation Experimental Study on Oxygen Consumption Coefficient and Ratio of CBOD and NBOD, International Journal Hydroelectric Energy, Vol. 18, pp.49-50.
O’Connor, D., and Dobbins, W., 1956, Mechanism of Reaeration in Natural Streams. American Society of Civil Engineers, Vol. 123, pp. 641-684.
Otubu, J.E., Hunter, J.V., Francisco, K.L., and Uchrin, C.G., 2006, Temperature effects on tubificid worms and their relation to sediment oxygen demand, J. Environ. Sci. Health, Part A, Vol. 41, pp1607-1613.
Park, S.S. and Lee, Y.S., 1996, A multi constituent moving segment model for the water quality predictions in steep and shallow streams, Ecological Modeling, Vol. 89, pp. 121-131.
Palmieri V., and de Carvalho R.J., 2006, Qual2e model for the Corumbatai River, Ecological Modelling, Vol. 198, pp. 269-275.
Park, S.S. and Lee, Y.S., 2002, A water quality modeling study of the Nakdong river, Korea, Ecological Modeling, Vol. 152, pp. 65-75.
Streeter, H.W., and Phelps, E.B., 1925, A Study of Pollution and Natural Purification of the Ohio, Public Health Bulletin, Vol. 146, pp.1-75.
Thomann, R.V., and Muller, J.A., 1987, Principles of Surface Water Quality Modeling and Control, Harper and Row Publishers, New York.
Thayer, H.P., Krutchkoff, R.G., 1967, Stochastic Model for BOD and DO in Streams, J. of Sani. Eng. Div. ASCE, Vol. 3, pp. 59-72.
Whitehead, P.G., Williams R.J., and Lewis D.R., 1997, Quality simulation along river systems (QUASAR): model theory and development, The Science of the Total Enviornment, Vol. 194, pp. 447-456.
Wolansk, D., 2005, Total Maximum Daily Loads (TMDLs) Analysis for Pocomoke River, Delaware, Delaware Department of Natural Resources and Environmental Control 820 Silver Lake Blvd, Suite 220.
Zhang T.T., Wang W.Y., 2010, Application of QUAL2Kw model for prediction of water quality modeling in Minjiang RiVer of Leshan, Guangdong Agricultural Sciences, Vol. 37, pp. 247-249.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊