(100.26.179.251) 您好!臺灣時間:2021/04/15 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳欣宜
研究生(外文):Shin-yi Chen
論文名稱:LKB1抑癌基因在肺癌中調控能量檢查點及DNA損傷所扮演的角色
論文名稱(外文):The role of LKB1 in the regulation of energetic checkpoints and DNA damage in the lung cancer
指導教授:鄭光宏鄭光宏引用關係
指導教授(外文):Kuang-Hung Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:65
中文關鍵詞:PJSWnt pathwayhypoxiaLKB1AMPK
外文關鍵詞:Wnt pathwayLKB1AMPKPJShypoxia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
STK11/LKB1為serine/threonine 蛋白激酶,主要是腺嘌呤磷酸激酶活化蛋白激酶(AMPK)的上游活化激酶,對於細胞維持能量平衡的代謝反應是一個很重要的調控因子。雖然已經清楚知道在Peutz–Jeghers syndrome (PJS)以及一些癌症尤其在肺腺癌中是由於LKB1基因發生突變所造成,但在晚期惡性腫瘤中LKB1在低氧,低血糖與輻射的條件下其訊息傳遞如何控制新陳代謝過程和能源生產仍然了解甚少。因此,我們建立體外肺癌細胞模型來研究LKB1在人類肺腺癌中訊息傳遞所扮演的角色。結果我們發現當我們將LKB1大量表現在LKB1 null A549與H460這兩株肺癌細胞後,LKB1會抑制細胞的轉移,transformation與chemo-resistance。我們從comet assay發現人類肺癌細胞株經UV照射後,LKB1會阻止UV所誘發的DNA damage,另外從MTT assay我們也看到LKB1促使UV照射所引起的細胞凋亡。此外,為了了解體內LKB1的抗癌機制,我們利用Immunoprecipitation-HPLC- Mass Spectrometry (IP-LC-MS) 去找出在不同的cellular stress條件下與LKB1有interacting的新蛋白。結果我們發現LKB1在正常的條件下參與了Cystic Fibrosis Transmembrane Regulator (CFTR) 合成的路徑且在低氧、低血糖的環境下也參與了glycolysis與gluconeogenesis的路徑。從以上我們的實驗結果可以知道在肺癌細胞中LKB1參與了細胞的轉移,能量的代謝以及DNA的修復,而且蛋白質質體分析將提供更多的資訊進一步探討癌症生物能量學和不正常成長信號間的關係,使得肺癌患者具有更加有效且更多選擇性的治療。
STK11/LKB1, a serine/threonine protein kinase, is a key upstream kinase of adenine monophosphate-activated protein kinase (AMPK), a necessary kinase in the control of metabolism for maintaining energy homeostasis. Although it has become clear that LKB1 is mutated in a significant number of Peutz–Jeghers syndrome (PJS) and sporadic cancers, most frequently in adenocarcinoma of the lung, little is known about how the LKB1 signaling regulates the metabolic process and energy production underlying hypoxia and increased radiosensitivity of lung tumor. Here, we employed lung cancer cells as a model system to dissect the functional roles of LKB1 signaling in human lung adenocarcinoma. We found that LKB1 inhibits lung cancer cell migration, transformation and chemo-resistance in vitro after we restored LKB1 expression in LKB1 null A549 and H460 lung cancer cells. We also found that LKB1 prevents UV-induced DNA damage in human lung cancer cell lines by comet assay and activated UV-induced apopotsis by MTT assays. Furthermore, we designed a systems biology approach to provide a comprehensive protein-protein interaction analysis in order to elucidate the LKB1 tumor suppressor network in vivo. We employed Immunoprecipitation-HPLC- Mass Spectrometry (IP-LC-MS) to identify the novel proteins interacting with LKB1 under different cellular stress conditions. We have identified that LKB1 is involved in CFTR synthesis pathway underlying normoxia condition and participates in the glycolysis and gluconeogenesis pathways underlying hypoxia condition. Together, our findings indicated that LKB1 is involved in the regulation of cell migration, energy metabolism and DNA repair in lung cancer cells, and should provides insights to further exploit the concept of deranged cancer bioenergetics and aberrant growth signals to achieve more effective and selective strategies for lung cancer patients.
論文審定書 ------------------------------------------------------------------------------------------- i
中文摘要 -------------------------------------------------------------------------------------------- ii
英文摘要 -------------------------------------------------------------------------------------------- iii
Abbreviations ------------------------------------------------------------------------------------ 1
Introduction 2
Specific Aim 5
Materials and Methods 6
Results 12
Discussion 17
Figures and Tables 22
References 54

Alexander, A., S. L. Cai, et al. (2010). ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A, 107(9): 4153-8.
Birnbaum, D. (1995). VEGF-FLT1 receptor system: a new ligand-receptor system involved in normal and tumor angiogenesis. Jpn J Cancer Res, 86(7): inside cover.
Blasco, R. B., S. Francoz, et al. (2011). c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell, 19(5): 652-63.
Bodner, S. M., J. D. Minna, et al. (1992). Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene, 7(4): 743-9.
Bossi, O., M. Gartsbein, et al. (2008). UV irradiation increases ROS production via PKCdelta signaling in primary murine fibroblasts. J Cell Biochem, 105(1): 194-207.
Boudeau, J., A. Kieloch, et al. (2003). Functional analysis of LKB1/STK11 mutants and two aberrant isoforms found in Peutz-Jeghers Syndrome patients. Hum Mutat, 21(2): 172.
Brose, M. S., P. Volpe, et al. (2002). BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res, 62(23): 6997-7000.
Cosentino, C., D. Grieco, et al. (2011). ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBOJ, 30(3): 546-55.
Darby, S. (2005). "Residential radon, smoking and lung cancer. Radiat Res, 163(6): 696.
Gill, R. K., S. H. Yang, et al. (2011).Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene.
Guldberg, P., P. thor Straten, et al. (1999). Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma. Oncogene, 18(9): 1777-80.
Hawley, S. A., J. Boudeau, et al. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2(4): 28.
Hayden, M. A., K. Akong, et al. (2007). Novel roles for APC family members and Wingless/Wnt signaling during Drosophila brain development. Dev Biol, 305(1): 358-76.
Hiltunen, M. O., L. Alhonen, et al. (1997). Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma. Int J Cancer, 70(6): 644-8.
Jansen, M., J. P. Ten Klooster, et al. (2009). LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev, 89(3): 777-98.
Jassem, E. and J. Jassem (1996). Mutation of gene p53 in lung cancer. Pneumonol Alergol Pol, 64(1-2): 5-10.
Jee, H. J., H. J. Kim, et al. (2009). UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS. Biochem Biophys Res Commun, 383(3): 358-62.
Karuman, P., O. Gozani, et al. (2001). The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell, 7(6): 1307-19.
Ku, J. L., K. H. Kim, et al. (2011). Establishment and characterization of six human lung cancer cell lines: EGFR, p53 gene mutations and expressions of drug sensitivity genes. Cell Oncol (Dordr), 34(1): 45-54.
Kulesza, P., K. Ramchandran, et al. (2011). Emerging concepts in the pathology and molecular biology of advanced non-small cell lung cancer. Am J Clin Pathol, 136(2): 228-38.
Li, C., B. Bapat, et al. (1998). Adenomatous polyposis coli gene mutation alters proliferation through its beta-catenin-regulatory function in aggressive fibromatosis (desmoid tumor). Am J Pathol, 153(3): 709-14.
Liang, X., K. J. Nan, et al. (2009). Overexpression of the LKB1 gene inhibits lung carcinoma cell proliferation partly through degradation of c-myc protein. Oncol Rep, 21(4): 925-31.
Ma, P. C., T. Kijima, et al. (2003). c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res, 63(19): 6272-81.
Mahasreshti, P. J., J. G. Navarro, et al. (2001). Adenovirus-mediated soluble FLT-1 gene therapy for ovarian carcinoma. Clin Cancer Res, 7(7): 2057-66.
Mahoney, C. L., B. Choudhury, et al. (2009). LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br J Cancer, 100(2): 370-5.
Marsit, C. J., E. A. Houseman, et al. (2008). Genetic and epigenetic tumor suppressor gene silencing are distinct molecular phenotypes driven by growth promoting mutations in nonsmall cell lung cancer. J Cancer Epidemiol, 215809.
Mirouse, V., L. L. Swick, et al. (2007). LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J Cell Biol, 177(3): 387-92.
Muehling, B., C. Wehrmann, et al. (2011). Comparison of Clinical and Surgical-Pathological Staging in IIIA Non-Small Cell Lung Cancer Patients. Ann Surg Oncol.
Najdi, R., R. F. Holcombe, et al. (2011). Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 10: 5.
Nakamura, T., F. Hamada, et al. (1998). Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells, 3(6): 395-403.
Omenn, G. S., G. E. Goodman, et al. (1996). Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med, 334(18): 1150-5.
Ossipova, O., N. Bardeesy, et al. (2003). LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nat Cell Biol, 5(10): 889-94.
Park, K., K. Lee, et al. (2011). Identification of a novel inhibitor of the canonical wnt pathway. Mol Cell Biol, 31(14): 3038-51.
Sanchez-Cespedes, M., P. Parrella, et al. (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res, 62(13): 3659-62.
Shackelford, D. B., D. S. Vasquez, et al. (2009). mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc Natl Acad Sci U S A, 106(27): 11137-42.
Shaw, R. J., N. Bardeesy, et al. (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6(1): 91-9.
Short, M., A. Short, et al. (2010). Using HPLC-mass spectrometry to teach proteomics concepts with problem-based techniques. Biochem Mol Biol Educ, 38(4): 242-6.
Spicer, J., S. Rayter, et al. (2003). Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKB1. Oncogene, 22(30): 4752-6.
Taylor, E. B., W. J. Ellingson, et al. (2006). Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate. Am J Physiol Endocrinol Metab, 290(4): E661-9.
Thunnissen, E., E. F. Smit, et al. (2011). EGFR-mutation in non-small cell lung carcinoma. Treatment with tyrosine kinase inhibitors possible. Ned Tijdschr Geneeskd, 155: A2554.
Tiainen, M., A. Ylikorkala, et al. (1999). Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci U S A, 96(16): 9248-51.
Udd, L. and T. P. Makela (2011). LKB1 signaling in advancing cell differentiation. Fam Cancer.
Wei, C., C. I. Amos, et al. (2005). Mutation of Lkb1 and p53 genes exert a cooperative effect on tumorigenesis. Cancer Res, 65(24): 11297-303.
William, W. N., Jr. and B. S. Glisson (2011). Novel strategies for the treatment of small-cell lung carcinoma. Nat Rev Clin Oncol.
Yamaguchi, S., K. Iwata, et al. (2002). Soluble Flt-1 (soluble VEGFR-1), a potent natural antiangiogenic molecule in mammals, is phylogenetically conserved in avians. Biochem Biophys Res Commun, 291(3): 554-9.
Yao, H., E. Ashihara, et al. (2011). Targeting the Wnt/beta-catenin signaling pathway in human cancers. Expert Opin Ther Targets, 15(7): 873-87.
Zeng, P. Y. and S. L. Berger. (2006). LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res, 66(22): 10701-8.
Zeqiraj, E., B. M. Filippi, et al. (2009). Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science, 326(5960): 1707-11.
Zhuang, Z. G., G. H. Di, et al. (2006). Enhanced expression of LKB1 in breast cancer cells attenuates angiogenesis, invasion, and metastatic potential. Mol Cancer Res, 4(11): 843-9.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 腎上腺素對H460肺癌細胞之AMPK路徑的影響
2. BMP4透過活化MAPK/ERK訊息傳遞路徑加速肝癌腫瘤細胞的增殖與蔓延
3. 建立在肺表皮細胞以表皮生長因子接受器和轉位子為基礎之致癌轉化模型,應用於肺癌基因表現和後遺傳變異之研究
4. 腺苷單磷酸活化蛋白激酶在漢丁頓舞蹈症發病過程中之功能角色探討
5. AMPK於帶有A8344G粒線體DNA突變的人類細胞之氧化壓迫反應及能量代謝適應所扮演的角色:粒線體疾病患者的細胞生存分子機制
6. 粒線體壓力對於人類肝癌細胞中mTOR訊息路徑之調控機制探討
7. The EGFR-induced microRNA miR-7 via Ras/ERK/c-Myc pathway modulates lung cancer oncogenesis by downregulation of ets2-repressor factor, ERF
8. 一氧化氮及氧化還原因子-1對醋酸鉛活化H157肺癌細胞ERK激酶的影響
9. 阿黴素誘發A549肺癌細胞p38 MAPK存活訊號調控p53/p21/Bcl-2/Bax/caspase-3系統之研究
10. 存活因子p38MAPK及Bcl-2和凋亡因子p53的交互作用可調控阿黴素誘發CL3肺癌細胞caspase-3之活化
11. 以二甲醚混合柴油對柴油引擎醛酮類化合物排放特徵之研究
12. 溶解性有機物與多環芳香族化合物結合行為之研究
13. 以資料群集處理技術(GMDH)探討高雄近岸大氣多環芳香烴濃度影響因子之研究
14. 蘭嶼海域粗枝竹珊瑚 (Isis hippuris) 二次代謝物之研究
15. 利用LC/MS/MS檢測吳郭魚體內安比西林殘留及代謝之研究
 
系統版面圖檔 系統版面圖檔