|
[1] J. D. Bernal, The structure of graphite. Proceedings of the Royal Society of London A 1924; 106(Dec. 1): 749-773. [2] R. E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society of London A 1951; 209(1097): 196-218. [3] B. Bhushan, Handbook of nanotechnology, 2nd edition. Springer science+business media, Inc. Heidelberg, 2007. [4] M. Ma, R. M. Hill, G. C. Rutledge, A review of recent results on superhydrophobic materials based on micro- and nanofibers. J. adhesion sci. technology 2008; 22(15): 1799-1817. [5] M. Inagaki, K. Kaneko, T. Nishizawa, Nanocarbons - recent research in Japan. Carbon 2004; 42(8-9): 1401-1417. [6] Q. P. Pham, U. Sharma, A. G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue engineering 2006; 12(5): 1197-1211. [7] T. V. Hughes and C. R. Chambers, Manufacture of carbon filaments. US Patent No. 405480, 1889. [8] P. Morgan, Carbon fibers and their composites. Taylor & Francis Group, CRC Press, Boca Raton, FL, 2005. [9] L. V. Radushkevich and V. M. Lukyanovich, Structure of the carbon produced in the thermal decomposition of carbon monoxide on an iron catalyst. Zh. Fiz. Khim. (Sov. J. Phys. Chem.) 1952; 26: 88-95. [10] T. Koyama and M. T. Endo, Structure and growth process of vapor-grown carbon fibers. Oyo Butsuri (in Japanese) 1973; 42(7): 690-696. [11] G. G. Tibbetts, Lengths of carbon fibers grown from iron catalyst particles in natural gas. Journal of Crystal Growth 1985; 73(3): 431-438. [12]F. Benissad, P. Gadelle, M. Coulon, and L. Bonnetain, Formation de Fibres de Carbone a Partir du Methane: I Croissance Catalytique et Epaississement Pyrolytique. Carbon 1988; 26(1): 61-69. [13]R. T. K. Baker, Synthesis, properties, and applications of graphite nanofibers. http://ftp.wtec.loyola.edu/loyola/nano/US.Review/09_03.htm, 1998. [14]S. Iijima, Helical Microtubules of Graphitic Carbon. Nature 1991; 354(6348): 56-58. [15] S. Ijima and T. Ichihashi, Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 1993; 363(6430): 603-605. [16] S. Ijima, P. M. Ajayan, T. Ichihashi; Growth-model for Carbon Nanotubes. Phys. Rev. Lett. 1992; 69(21): 3100-3103. [17] C. Kim, S.H. Park, W. J. Lee, K. S. Yang, Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning. Electrochimica Acta 2004; 50(2-3): 877-881. [18] I. S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process - A review. Journal of materials processing Technology 2005; 167(2-3): 283-293. [19] H. Q. Hou, D. H. Reneker, Carbon nanotubes on carbon nanofibers: A novel structure based on electrospun polymer nanofibers. Adv. Mater. 2004; 16(1): 69-73. [20] C. Kim, S. H. Park, J. L. Cho, D. Y. Lee, T. J. Park, W. J. Lee, K. S. Yang, Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J. Raman Spectroscopy 2004; 35(11): 928-933. [21] Y. Wang, S. Serrano, J. J. Santiago-Aviles, Raman characterization of carbon nanofibers prepared using electrospinning. Synthetic Metals 2003; 138(3): 423-427. [22] N. Kasahara and A. Oya, Preparation of thin carbon fibers from phenol-formaldehyde polymer micro-beads dispersed in polymer matrix. Carbon 2000; 38(8): 1141-1144. [23] N. Patel, K. Okabe, A. Oya, Designing carbon materials with unique shapes using polymer blending and coating techniques. Carbon 2002; 40(3): 315-320. [24] D. Hulicova, A. Oya, The Polymer blend technique as a method to design fine carbon materials. Carbon 2003; 41(7): 1443-1450. [25] P. M. Ajayan, O. Z. Zhou, Carbon nanotubes synthesis structure properties and application, chapter 13 Applications of carbon nanotubes. Springer-Verlag Berlin Heidelberg, 2001. [26] V. Z. Mordkovich, Carbon nanofibers: A new ultrahigh-strength material for chemical technology. Theoret. Found. Chem. Eng. 2003; 37(5): 429-438. [27] E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder et al., Carbon nanofibers for composite applications. Carbon 2004; 37(5): 1153-1158. [28] Y. J. Kim, Y. Horie, Y. Matsuzawa, S. Ozaki, M. Endo, M. S. Dresselhaus, Structural features necessary to obtain a high specific capacitance in electric double layer capacitors. Carbon 2004; 42(12-13): 2423-2432. [29] V. Barranco, M. A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibanez et al, Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. J. Phys. Chem. C 2010; 114(22): 10302-10307. [30] M. Endo, Y. J. Kim, T. Fujino, S. Oyama, O. Naohiko, K. Sato et al, A characteristic of alkaline activated mesophase based carbon for electrochemical capacitor. Mol. Cryst. Liq. Cryst. Proceeding of the 1st international symposium on Nanocarbons 2002; 388: 481/67-488/74. [31] M. Endo, Y. J. Kim, Y. Nishimura, T. Inoue, H. Ohta, M. S. Dresselhaus et al, Morphology and organic EDLC applications of chemically activated AR-resin-based carbons. Carbon 2002; 40(14): 2613-2626. [32] Y. J. Kim, Y. A. Kim , T. Chino, H. Suezaki, M. Endo, M. S. Dresselhaus, Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors. Small 2006; 2(3): 339-345. [33] Q. Jiang, M. Z. Qu, G. M. Zhou, B. L. Zhang, Z. L. Yu, A study of activated carbon nanotubes as electrochemical super capacitors electrode materials. Mater. Lett. 2002; 57(4): 988-991. [34] J. M. Blackman, J. W. Patrick, A. Arenillas, W. Shi, C. E. Snape, Activation of carbon nanofibres for hydrogen storage. Carbon 2006; 44(8): 1376-1385. [35] F. Suarez-Garcia, E. Vilaplana-Ortego, M. Kunowsky, M. Kimura, A. Oya, A. Linares-Solano, Activation of polymer blend carbon nanofibres by alkaline hydroxides and their hydrogen storage performances. Int. J. Hydrogen Energ. 2009; 34(22): 9141-9150. [36] V. Jimenez, P. Sanchez, J. A. Diaz, J. L. Valverde, A. Romero, Hydrogen storage capacity on different carbon materials. Chem. Phys. Lett. 2010; 485(1-3): 152-155. [37] L. Zubizarreta, A. Arenillas, J. J. Pis, Carbon materials for H2 storage. Int. J. Hydrogen Energ. 2009; 34: 4575-4581. [38] J. S. Im, S.J. Park, Y.S. Lee, Superior prospect of chemically activated electrospun carbon fibers for hydrogen storage. Mater. Res. Bull. 2009; 44(9): 1871-1878. [39] N. N. Bui, B. H. Kim, K. S. Yang, M. E. Dela Cruz, J. P. Ferraris, Activated carbon fibers from electrospinning of polyacrylonitrile/pitch blends. Carbon 2009; 47(10): 2538-2539 [40] E. J. Ra, E. Raymundo-Pinero, Y. H. Lee, F. Beguin, High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon; 2009, 47(13): 2984-2992. [41] J. I. Paredes, A. Martinez-Alonso, J. M. D. Tascon, A microscopic view of physical and chemical activation in the synthesis of porous carbons. Langmuir 2006; 22(23): 9730-9739. [42] J. A. Macia-Agullo, B. C. Moore, D. Cazorla-Amoros, A. Linares-Solano, Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 2004; 42(7): 1367-1370. [43] B. J. Kim, Y. S. Lee, S. J. Park, A study on pore-opening behaviors of graphite nanofibers by a chemical activation process. J. Colloid Interface Sci. 2007; 306(2): 454-458. [44] D. Luxembourg, X. Py, A. Didion, R. Gadiou, C. Vix-Guterl, G. Flamant, Chemical activations of herringbone-type nanofibers. Micropo. and Mesopo. Mater. 2007; 98(1-3): 123-131. [45] A. Perrin, A. Celzard, A. Albiniak, J. Kaczmarczyk, J. F. Mareche, G. Furdin, NaOH activation of anthracites: effect of temperature on pore textures and methane storage ability. Carbon 2004; 42(14): 2855-2866. [46] Z. Yue, J. Economy, C. L. Mangun, Preparation of fibrous porous materials by chemical activation 2. H3PO4 activation of polymer coated fibers. Carbon 2003; 41(9): 1809-1817 [47] V. Barranco, M. A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibanez et al, Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide. Electrochim Acta 2009; 54(28):7452-7457. [48] M. Endo, Y. A. Kim, T. Takeda, S.H. Hong, T. Matusita, T. Hayashi, M. S. Dresselhaus, Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon 2001; 39(13): 2003-2010. [49] V. Ivanov, A. Fonseca, J. B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X. B. Zhang, Catalytic production and purification of nanotubules having fullerene-scale diameters. Carbon 1995; 33(12): 1727-1738. [50] N. E. Tran and S. G. Lambrakos, Purification and defect elimination of single-walled carbon nanotubes by the thermal reduction technique. Nanotechnology 2005; 16(6): 639-646. [51]M. C. Paiva, P. Kotasthane, D. D. Edie, A. A. Ogale, UV stabilization route for melt-processible PAN-based carbon fibers. Carbon 2003; 41(7): 1399-1409. [52] A. K. Naskar, R. A. Walker, S. Proulx ,D. D. Edie, A. A. Ogale, UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer. Carbon 2005; 43(5): 1065-1072. [53] H. G. Tennent, Carbon fibrils, method for producing same and compositions containing same. U.S. Patent No. 4663230, filed on 06-Dec-1984. [54] A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, M. L. Simpson et al, Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J. Applied Physics 2005; 97(4): 41301-41339. [55] G. B. Zheng, K. Kouda, H. Sano, Y. Uchiyama, Y. F. Shi, H. J. Quan, A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon 2004; 42(3): 635-640. [56] L. Ci, J. Q. Wei, B. Q. Wei, J. Liang, C. Xu, D. H. Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon 2001; 39(3): 329-335. [57] L. Ci, Y. H. Li, B. Q. Wei, J. Liang, C. Xu, D. Wu, Preparation of carbon nanofibers by the floating catalyst method. Carbon 2000; 38(14): 1933-1937. [58] M. Endo, K. T., T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C. H. Kiang, M. S. Dresselhaus, Stacking nature of graphene layers in carbon nanotubes and nanofibers. Phys. Chem. Solids 1997; 58(11): 1707-1712. [59] M. Endo, Y. A. K., T. Hayashi, K. Nishimurab, T. Matusita, K. Miyashita, M.S. Dresselhaus, Vapor-grown carbon fibers (VGCFs) basic properties and their battery applications. Carbon 2001; 39(9): 1287-1297. [60] M. Jayasankar, R. Chand, S. K. Gupta, D. Kunzru, Vapor-grown carbon fibers from benzene pyrolysis. Carbon 1995; 33(3): 253-258. [61] Y. A. Kim, T. Hayashi, Y. Fukai, M. Endo, T. Yanagisawa, Microstructural Change of Cup-Stacked Carbon Nanofiber by Post-Treatment. Mol. Cryst. Liq. Cryst. 2002; 387: 381/157-385/161. [62] Y. Y. Fan, H. M. Cheng, Y. L. Wei, G. Su, Z. H. Shen, Tailoring the diameters of vapor-grown carbon nanofibers. Carbon 2000; 38(6): 921-927. [63] Y. Y. Fan, H. M. Cheng, Y. L. Wei, G. Su, Z. H. Shen, The influence of preparation parameters on the mass production of vapor-grown nanofibers. Carbon 2000; 38(6): 789-795. [64] V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, M. L. Simpson, Growth rate of plasma-synthesized vertically aligned carbon nanofibers. Chemical Physics Letters 2002; 361(5-6): 492-498. [65] Y. Y. Fan, F. Li, H. M. Cheng, G. Su, Y. D. Yu, Z. H. Shen, Preparation, morphology, and microstructure of diameter-controllable vapor-grown carbon nanofibers. J. Mater. Res. 1998; 13(8): 2342-2346 [66] S. Collins, R. Brydson, B. Rand, Structural analysis of carbon nanofibres grown by the floating catalyst method. Carbon 2002; 40(7): 1089-1100. [67] G. B. Zheng, H. Sano, Y. Uchiyama; New structure of carbon nanofibers after high-temperature heat-treatment. Carbon 2002; 41(4): 853-856. [68] T. W. Ebbesen, P. M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 1992; 358(6383): 220-222. [69] Z. J. Shi, Y. Lian, S. Iijima, L. Zhou, K. T. Yue, S. L. Zhang et al, Mass-production of single-wall carbon nanotubes by arc discharge method. Carbon 1999; 37(9): 1449-1453. [70]M. Keidar, A. M. Waas, On the conditions of carbon nanotube growth in the arc discharge. Nanotechnology 2004; 15(11): 1571-1575. [71] H. Takikawa, O. Kusano, T. Sakakibara, Graphite cathode spot produces carbon nanotubes in arc discharge. J. Phys. D: Appl. Phys. 1999; 32(18): 2433-2437. [72] Y. Ando, X. L. Zhao, T.i Sugai, M. Kumar, Growing Carbon Nanotubes. Materials Today 2004; Oct.: 22-29. [73] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters 1995; 243(1-2): 49-54. [74] C. D. Scott, S. Arepalli, P. Nikolaev, R. E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Applied Physics A: Materials Science & Processing 2001; 72(5): 573-580. [75] D. Hulicova, F. Sato, K. Okabe, M. Koishi, A. Oya, An attempt to prepare carbon nanotubes by the spinning of microcapsules. Carbon 2001; 39(9): 1438-1442. [76] D. Hulicova, K. Hosoi, S. Kuroda, H. Abe, A. Oya, Carbon nanotubes prepared by spinning and carbonizing fine core-shell polymer microspheres. Adv. Mater. 2002; 14(6): 452-455. [77] K. Okabe, T. Yokoyama, N. Shiraishi, A. Oya, Preparation of thin carbon fibers from waste wood-derived phenolic resin. J. mater. sci. 2005; 40(14): 3847-3848. [78] D. Hulicova, M. Yamamoto, T. Yokoyama, A. Oya, A novel preparation method of carbon nanotubes by spinning core/shell polymer particles. Key engineering materials 2004; 264-268(1-3): 2275-2278. [79] D. Hulicova, K. Hosoi, S. Kuroda, A. Oya, Carbon nanotubes prepared from three-layered copolymer microspheres of acrylonitrile and methylmethacrylate. Carbon 2005; 43(6): 1246-1253. [80] J. Ozaki, W. Ohizumi, N. Endo, A. Oya, Preparation of platinum loaded carbon fiber by using a polymer blend. Carbon 1997; 35(10-11): 1676-1677. [81] J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya et al, Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997; 35(7): 1031-1033. [82] R. Horigome, N. Kasahara, A.Oya, Structure of porous carbon fiber derived from phenolic polymer containing polystyrene microbeads. J. mater. sci. letters 2001; 20(5): 409-411. [83]Y. Horie, S. Shiraishi, A. Oya, Preferential supporting of platinum particles on pore surface using a polymer blend technique. J. mater. sci. letters 2001; 20(2): 105-106. [84] N. Kasahara, S. Shiraishi, A. Oya, Heterogeneous graphitization of thin carbon fiber derived from phenol-formaldehyde resin. Carbon 2002; 41(8): 1654-1656. [85] K. Okabe, S. Shiraishi, A. Oya, Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000 degrees C. Carbon 2004; 42(3): 667-669. [86] D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel?. Adv. Mater. 2004; 16(14): 1151-1170. [87] G. S. Chung, S. Jo, B. C. Kim, Properties of Carbon Nanofibers Prepared from Electrospun Polyimide. J. Appl. Polym. Sci. 2005; 97(1): 165-170. [88] Hills Inc., An introduction to bicomponent fibers. http://www.hillsinc.net/images/ Bicotable2.gif. [89]A. V. Drogun, Mixing and spinnability of polymer blends on the example of the polymide 6.6-poly(ethylene terephthalate) model system. Fibre Chemistry 2002; 34(2): 32-35. [90]A. Karami, S. T. Balke, Polymer blend de-mixing and morphology development of immiscible polymer blends during tube flow. Polymer Engineering & sci. 2000; 40(11): 2342-2355. [91]B. Majumdar, D. R. Pault, A. J. Oshinski, Evolution of morphology in compatibilized VS uncompatibilized polyamide blends. Polymer 1997; 38(8): 1787-1808. [92]B. Wang, J. Zhao, Studies on preparation of immersion-type polypropylene fragrant fiber. I.formation of matrix fiber in the melt-spinning process and its technique of immersion essential oil. J. Appl. Polym. Sci. 2003; 90(7): 1970-1979. [93] B. S. Yoon, J. Y. Joand, M. H. Suh, Y. M. Lee, S. H. Lee, Mechanical properties of polypropylene/polymide 6 blends: effect of manufacturing processes and compatibilization. polymer 1997; 18(6): 757-764. [94]D. Gregor-Svetec, Mechanical properties of polypropylene fibers produced from the binary polymer blends of different molecular weights. J. Appl. Polym. Sci. 2000; 75(10): 1211-1220. [95] E. Fekete, E. Foldes, B. Pukanszky, Effect of molecular interaction on the miscibility and structure of polymer blends. Euro. Polym. J. 2005; 41(4): 727-736. [96] E. Kormendy, A. Marcincin, M. Hricova, V. Kovacic, Phase morphology of polypropylene-polyethylene terephthalate blend fibers. Fibers&Textiles in Eastern Europe 2005; 13(1): 20-23. [97] G. J. Nam, K. Y. Kim, J. W. lee, The effect of SEBS on interfacial tension and rheological properties of LDPE/PS blend. J. Appl. Polym. Sci. 2005; 96(3): 905-911. [98] G. Verfaillie, J. Devaux, R. Legras, Relationship between surface and bulk morphologies for immiscible polymer blends. Polymer 1999; 40(11): 2929-2938. [99] N. Mekhilef and H. Verhoogtt, Phase inversion and dual-phase continuity in polymer blends: theoretical predictions and experimental results. Polymer 1996; 37(18): 4069-4077. [100]H. H. Cho, K. H. Kim, Y. A. Kang, H. Ito, T. Kikutani, Fine structure and physical properities of poly(ethylene terephthalate)/polyethylene bicomponent fibers in high-speed spinning. II. poly(ethylene terephthalate) sheath/polyethylene core fibers. J. Appl. Polym. Sci. 2000; 77(10): 2267-2277. [101]J. R. Collier, O. Romanoschi, S. Petrovan, Elongational rheology of polymer melts and solutions. J. Appl. Polym. Sci. 1998; 69(12): 2357-2367. [102] M. Frounchi, M. Mehrabzadeh, S. S. Mohseni, Phase morphology of polyblends of amorphous polycarbonate and semi-crystalline polyethylene terephthalate. Iranian polymer journal 2002; 11(3): 151-157. [103]M. Afshari, R. Kotek , M. H. Kish, H. N. Dast, B. S. Gupta, Effect of blend ratio on bulk properties and matrix-fibril morphology of polypropylene/nylon 6 polyblend fibers. Polymer 2002; 43(4): 1331-1341. [104]N. Dencheva, T. Nunes, M. J. Oilveira, Z. Denchev, Microfibrillar composites based on polyamide/polyethylene blends. 1.Structure investigations in oriented and isotroopic polyamide 6. Polymer 2005; 46(3): 887-901. [105]P. Potschke, K. Wallheinke, H. Fritsche, H. Stutz, Morphology and properties of blends with different thermoplastic polyurethanes and polyolefines. J. Appl. Polym. Sci. 1997; 64(4): 749-762. [106] R. T. Tol, V. B. F. Mathot, G. Groeninckx, Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 droplets, part 1:uncompatibized PS/PA6,(PPE/PS)/PA6 and PPE/PA6 blends. Polymer 2005; 46(2): 369-382. [107] S. V. Nair, Z. Oommen, S. Thomas, Phase Morphology development and melt rheological behavior in nylon 6/polystyrene blends. Polymer 2002; 86(14): 3537-3555. [108]T. Kikytani, J. Radhakrishnan, S. Arikawa, A. Takaku, F. Niwa, Y. Kudo et al, High-speed melt Spinning of bicomponent fibers: Mechanism of fiber structure development in poly(ethylene terephthalate)/polypropylene system. J. Appl. Polym. Sci. 1996; 62(11): 1913-1924. [109]T. Takahashi, J. I. Takimoto, K. Koyama, Elongational viscosity for miscible and immiscible polymer blends. II. blends with a small amount of UHMW polymer. J. Appl. Polym. Sci. 1999; 72(7): 961-969. [110] T. H. Ku, C. A. Lin, Rheological properties of thermoplastic polyvinyl alcohol and polypropylene blend melts in capillary extrusions. Polymer Research 2005; 12(1): 23-29. [111] V. G. Rezanova, Y. V. Pridatchenko, M. V. Tsebrenko, Mathematical description of deformation of a dispersed phase polymer blends. Fibre Chemistry 2003; 35(6): 468-474. [112]X. D. Li, M. Chen, Y. Huang, G. Lin, C. Q. Wang, G. M. Cong et al, In-situ composite based on polypropylene and nylon6. Advances in Polymer Technology 1997; 16(4): 331-336. [113] Y. B. Choi, S. Y. Kim, Effects of interface on the dynamic mechanical properties of PET/Nylon 6 bicomponent fibers. Polymer 1999; 74(8): 2083-2093. [114] Z. Cherian, R. Lehman, K. VanNess, Investigation into the morphology and mechanical properties of melt-drawn filaments from uncompatibilized blends of polystyrene and high-density polyethylene. J. Appl. Polym. Sci. 2006; 103(3): 1616-1625. [115] Z. Denchev, M. J. Oliverira, J. F. Mano, J. C. Viana, S. S. Funari, Nanostructured composites based on polyethylene-polyamide blends. II. Probing the orientation in polyethylene-polyamide nanocomposites and their precursors. J. Macromolecular Sci. 2004; B43(1): 163-176. [116] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, S. Delpeux, E. Frackowiak, K. Szostak et al., High surface area carbon nanotubes prepared by chemical activation. Carbon 2002; 40(9): 1614–1617. [117] S. H. Yoon, S. G. Lim, Y. Song, Y. Ota, A. Tanaka, I. Mochida et al, KOH activation of carbon nanofibers. Carbon 2004; 42(8-9): 1723-1729. [118] D. Lucio, D. Laurent, G. Roger, S. Yasushi, Y. Noriko, KOH activated carbon multiwall nanotubes. Carbon-Sci. Tech. 2009; 3: 120 -124. [119] H. Y. Hsiao, F. Y. Chang, L. C. Row, S. H. Cheng, J. P. Chen, Preparation of activated carbon from PAN-based solution blown nonwoven by KOH activation. Taiwan textile research J. 2009; 19(3): 6-12. [120] C. Merino, P. Soto, E. Vilaplana-Ortego, J. M. G. de Salazar, F. Pico, J. M. Rojo, Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors. Carbon 2005; 43(3): 551-557. [121] Y. J. Kim, Y. A. Kim, T. Chino, H. Suezaki, M. Endo, M. S. Dresselhaus, Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors. Small 2006; 2(3): 339-345. [122] V. Jiménez, P. Sánchez, J. L. Valverde, A. Romero, Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials. Materials Chemistry and Physics 2010; 124(1): 223-233. [123] V. Jimenez, J. A. Diaz, P. Sanchez, J. L. Valverde, A. Romero, Influence of the activation conditions on the porosity development of herringbone carbon nanofibers. Chemical Engineering J. 2009; 155(3): 931-940. [124] V. Jimenez, P. Sanchez, J. L. Valverde, A. Romero, Influence of the activating agent and the inert gas (type and flow) used in an activation process for the porosity development of carbon nanofibers. J. Colloid and Interface Sci. 2009; 336(2): 712-722. [125] V. Jimenez, A. Nieto-Marquez, A. M. Raboso, S. Gil, A. Romero, J. L. Valverde, Influence of the chemical activation of carbon nanofibers on their use as catalyst support. Applied Catalysis A: General 2011; 393(1-2): 78–87. [126] D. Luxembourg, X. Py, A. Didion, R. Gadiou, C. Vix-Guterl, G. Flamant, Chemical activations of herringbone-type nanofibers. Microporous and Mesoporous Materials 2007; 98(1-3): 123–131. [127] L. Y. Meng, S. J. Park, Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. J. Colloid and Interface Sci. 2010; 352(2): 498–503. [128] N. C. Hung, I. V. Anoshkin, E. G. Rakov, Chemical Activation of Carbon Nanofibers and Nanotubes. Russian J. Applied Chemistry 2007; 80(3): 443-447. [129] V. Jimenez, P. Sanchez, A. de Lucas, J. L. Valverde, A. Romero, Influence of the nature of the metal hydroxide in the porosity development of carbon nanofibers. J. Colloid and Interface Sci. 2009; 336(1): 226–234. [130] K. J. Lee, N. Shiratori, G. H. Lee, I. Mochida, S. H. Yoon, J. Jang et al, Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon 2010; 48(15): 4248-4255. [131] B. H. Kim, N. N. Bui, K. S. Yang, M. dela Cruz, J. P. Ferraris, Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning. Bulletin of the Korean Chemical Society 2009; 30(9): 1967-1972. [132] H. Tavanai, R. Jalili, M. Morshed, Effects of fiber diameter and CO2 activation temperature on the pore characteristics of polyacrylonitrile based activated carbon nanofibers. Surface and interface analysis 2009; 41(10): 814 -819. [133] M. K. Seo, S. J. Park, Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors. Mater. Sci. and Eng. B 2009; 164(2): 106–111. [134] C. Kim, K. S. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Applied physics letters 2003; 83(6): 1216 -1218. [135] J.A. Macia-Agullo, B.C. Moore, D. Cazorla-Amoros, A. Linares-Solano, Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 2004; 42(7): 1367–1370. [136] M. Inagaki, L. R. Radovic, Nanocarbons. Carbon 2002; 40(12): 2263-2284. [137] A. P. Ramirez, Carbon nanotubes for science and technology. Bell Labs Tech. J. 2005; 10(3): 171-185. [138] K. P. De Jong, J. W. Geus, Carbon nanofibers: catalytic synthesis and applications. Catal. Rev.: Sci. Eng. 2000; 42(4): 481-510. [139] P. J. F. Harris, Carbon Nanotubes and Related Structures, Cambridge University Press, United Kingdom, 1999. [140] G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998; 393(6683): 346-347. [141] F. L. Zhou, R. H. Gong, Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym. Int. 2008; 57: 837-845. [142] G. S. Chung, S. M. Jo, B. C. Kim, Properties of carbon nanofibers prepared from electrospun polyimide. J. Appl. Polym. Sci. 2005; 97(1): 165-170. [143] D. K. Kim, S. H. Park, B. C. Kim, B. D. Chin, S. M. Jo, D. Y. Kim, Electrospun polyacrylonitrile-based carbon nanofibers and their hydrogen storages. Macromolec. Res. 2005; 13(6): 521-528. [144] H. H. Cho, K. H. Kim, Y. A. Kang, H. Ito, T. Kikutani, Fine structure and physical properties of polyethylene/poly(ethylene terephthalate) bicomponent fibers in high-speed spinning. I. Polyethylene sheath/poly(ethylene terephthalate) core fibers. J. applied polym. sci. 2000; 77(10): 2254-2266. [145] J. Economy, R. A. Clark, Fibers from Novolacs. U. S. Patent No. 3650102, filed on 1968. [146] J. Economy, R. A. Clark, Method for production of novolac fibers. U. S. Patent No. 3723588, filed on 1970. [147] S. L. Hayes, Encyclopedia of Chemical Technology. Wiley, New York, 1981. [148] P. J. Bruyn, L. M. Foo, A. S. C. Lim, M. G. Looney, D. H. Solomon, The chemistry of novolac resins. Part 4. The strategic synthesis of model compounds. Tetrahedron 1997; 53(40):13915-13932. [149] C. L. Liu, Q. G. Guo, J. L. Shi, L. Liu, A study on crosslinking of phenolic fibers. Mater. Chem. Phys. 2005; 90(2-3): 315-321 [150] C. L. Liu, W. S. Dong, J. R. Song, L. Liu, Evolution of microstructure and properties of phenolic fibers during carbonization. Mater. Sci. and Eng. A 2007; 459(1-2): 347–354. [151] N. Kishore, S. Sachan, K. N. Rai, A. Kumar, Synthesis and characterization of a nanofiltration carbon membrane derived from phenol-formaldehyde resin. Carbon 2003; 41(15): 2961-2972. [152] A. Ermolieff, A. Chabli, F. Pierre, G. Rolland, D. Rouchon, C. Vannuffel et al, XPS, Raman spectroscopy, X-ray diffraction, specular X-ray reflectivity, transmission electron microscopy and elastic recoil detection analysis of emissive carbon film characterization. Surf. Interface Anal. 2001; 31(3): 185-190. [153] J. P. Boudou, J. I. Paredes, A. Cuesta, A. Martinez-Alonso, J. M. D. Tascon, Oxygen plasma modification of pitch-based isotropic carbon fibres. Carbon 2003; 41(1): 41-56. [154] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd Edition. Prentice Hall, Upper Saddle River, NJ 07458, 2001. [155] Y. Kashiwase, T. Ikeda, T. Oya, T. Ogino, Manipulation and soldering of carbon nanotubes using atomic force microscope. Appl. Surf. Sci. 2008; 254(23): 7897-7900. [156] W. P. Hoffman, Scanning probe microscopy of carbon fiber surfaces. Carbon 1992; 30(3): 315-331. [157] J. I. Paredes, A. Martinez-Alonso, J. M. D. Tascon, Comparative study of the air and oxygen plasma oxidation of highly oriented pyrolytic graphite: a scanning tunneling and atomic force microscopy investigation. Carbon 2000; 38(8): 1183-1197. [158] J. I. Paredes, A. Martinez-Alonso, J. M. D. Tascon, Surface characterization of submicron vapor grown carbon fibers by scanning tunneling microscopy. Carbon 2001; 39(10): 1575-1587. [159] Y. A. Kim, T. Matusita, T. Hayashi, M. Endo, M. S. Dresselhaus, Topological changes of vapor grown carbon fibers during heat treatment. Carbon 2001; 39(11): 1747-1752 [160] J. I. Paredes, M. Burghard, A. Martinez-Alonso, J. M. D. Tascon, Graphitization of carbon nanofibers: visualizing the structural evolution on the nanometer and atomic scales by scanning tunneling microscopy. Appl. Phys. A 2005; 80(4): 675-682. [161] J. L. Figueiredo, P. H. Serp, B. Nysten, J. P. Issi, Surface treatments of vapor-grown carbon fibers produced on a substrate - Part II: Atomic force microscopy. Carbon 1999; 37(11): 1809-1816. [162] S. Bellucci, G. Gaggiotti, M. Marchetti, F. Micciulla, R. Mucciato, M. Regi, Atomic force microscopy characterization of carbon nanotubes. J. Phys. Conf. 2007; Ser. 61: 99-104 [163] K. K. Cheng, T. C. Hsu, L. H. Kao, Carbon nanofibers prepared by a novel co-extrusion and melt-spinning of phenol formaldehyde based core/sheath polymer blends. J. Mater. Sci. 2011; 469(6): 1870-1876 [164] J. I. Paredes, A. Martinez-Alonso, J. M. D. Tascon, Application of scanning tunneling and atomic force microscopies to the characterization of microporous and mesoporous materials. Micropo. Mesopo. Mater. 2003; 65(2-3): 93-126. [165] M. Hirose, H. Ito, Y. Kamiyama, Effect of skin layer surface structures on the flux behavior of RO membranes. J. Membr. Sci. 1996; 121(2): 209-215. [166] X. D. Zhu, F. Ding, H. Naramoto, K. Narumi, AFM investigation on surface evolution of amorphous carbon during ion-beam-assisted deposition. Appl. Surf. Sci. 2006; 253(3): 1480-1483. [167] M. Endo, C. Kim, T. Karaki, T. Kasai, M. J. Matthews, M. S. Dresselhaus et al, Structural characterization of milled mesophase pitch-based carbon fibers. Carbon 1998; 36(11): 1633-1641. [168] O. Beyssac, B. Goffe, J. P. Petitet, E. Froigneux, M. Moreau, J. N. Rouzaud, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta Part A 2003; 59(10): 2267-2276. [169] F. Salver-Disma, J. M. Tarascon, C. Clinard, J. N. Rouzaud, Transmission electron microscopy studies on carbon materials prepared by mechanical milling. Carbon 1999; 37(12): 1941-1959 [170] A. Sharma, T. Kyotani, A. Tomita, Comparison of structural parameters of PF carbon from XRD and HRTEM techniques. Carbon 2000; 38(14): 1977-1984. [171] D. A. Fonseca, H. R. Gutierrez, A. D. Lueking, Morphology and porosity enhancement of graphite nanofibers through chemical etching. Micropo. Mesopo. Mater. 2008; 113(1-3): 178–186. [172] D. Lozano-Castelló, M. A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Preparation of activated carbons from Spanish anthracite: I. Activation by KOH. Carbon 2001; 39(5): 741-749. [173] M. A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism. Carbon 2003; 41(2): 267-275. [174] M. A. Lillo-Rodenas, J. Juan-Juan, D. Cazorla-Amoros, A. Linares-Solano, About reactions occurring during chemical activation with hydroxides. Carbon 2004; 42(7): 1371-1375. [175] B. J. Lee, S.R. Sivakkumar, J. M. Ko, J. H. Kim, S. M. Jo, D. Y. Kim, Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors. J. Power Sources 2007; 168(2): 546-552
|