(100.26.179.251) 您好!臺灣時間:2021/04/15 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃兪翔
研究生(外文):Yu-shyang Huang
論文名稱:YAG:Ce3+螢光粉體的摻雜研究、表面改質及應用
論文名稱(外文):YAG:Ce3+ phosphors doping research, and application of surface modification
指導教授:王朝盛
指導教授(外文):Jan-Sheng Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:78
中文關鍵詞:吸附發光強度發光二極體摻雜
外文關鍵詞:intensitydefectsdopedYAG:Ce3+LED
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白光LED 製造過程中,最重要的部份除了LED 發光晶片、封裝技術…等之外,接著也就是螢光粉粉末的開發被討論最多,而螢光粉粉末也是各廠商申請最多智慧財產權維護利益的技術要點。而要如何突破這些被智慧財產權保護的專利技術,就是去了解螢光粉的組成、特性以及製造方式,並嘗試以各種不同方式來研究應該如何改善目前已知的螢光粉,更近一步創出新穎的螢光粉粉末。

我們的實驗即是將YAG:Ce3+摻雜別種化合物(例如:銅、鋁、…)於小型試管中,並且在試管內部接近真空的狀態之下做開口端的密合,接著讓小型試管做升溫加熱,希望藉由摻雜元素在高溫下的影響促成YAG:Ce3+調整發光波段,而在實驗中也發現隨著試管加熱溫度的提升導致發光強度有逐漸下降的傾向。由於YAG:Ce3+黃色螢光粉面臨其表面擁有缺陷的缺點,所以我們研究讓YAG:Ce3+螢光粉於表面吸附抗反射薄膜來加以改善並且修飾YAG:Ce3+表面擁有的缺陷,觀測結果顯示經過修飾表面缺陷的YAG:Ce3+在發光強度上有提升的現象。我們也將抗反射薄膜吸附於YAG:Ce3+表面的化合物應用於螢光膠之上,並且與原始YAG:Ce3+所製做而成的螢光膠做比較,在螢光膠的比較上發現YAG:Ce3+表面吸附抗反射薄膜後的發光效率以及對於藍光光源的吸收率都有較佳的表現。
With today''s technology, a variety of styles and a variety of different LED material was produced. The development of LED in the same time, the vendor industry in order to defend their own interests and under the huge business opportunities, and each side of the application of the style-related intellectual property rights in the LED,although the wise limits of property rights, but also contributed to a more diverse The LED manufacturing methods have been developed.

Our experiment is the YAG:Ce3+ doped other compounds (for example: copper,aluminum, ...) in a small test tube and in within the near vacuum of a state to do the open end of the seal, and then make a small test tube temperature heating, hopes the doping elements in the impact of high temperatures contributed to YAG:Ce3+ to adjust the lasing wavelength, and in vitro experiments also found with the increase of heating temperature photoluminescence intensity for a gradual downward trend. The YAG:Ce3+ yellow phosphor surface facing the shortcomings of a defect, so we research for YAG:Ce3+ phosphors adsorbed on the surface of anti-reflective film to be improved and modified YAG:Ce3+ has a surface defect observation showed that after modification surface defects of the YAG:Ce3+ emission intensity on increase in the phenomenon. We will also anti-reflective film adsorbed on the YAG:Ce3+ compounds used in fluorescent plastic surface on top, and with the original YAG:Ce3+ phosphors are made of rubber making to compare, comparison of the fluorescent plastic found on YAG:Ce3+ surface adsorption anti-reflective film for luminescence efficiency and the absorption rate for the blue light has a better performance.
論文審定書………………………………………………i
致 謝……………………………………………………iii
中文摘要………………………………………………iv
英文摘要………………………………………………v
內容目錄………………………………………………vi
圖次……………………………………………………ix
表次……………………………………………………xi
第一章 緒論…………………………………………1
1.1 前言……………………………………………1
1.2 研究動機………………………………………1
第二章 理論基礎與文獻回顧………………………3
2.1 LED 白光發光原理……………………………3
2.1.1 LED 白光發光原理與敘述…………………3
2.1.2 LED 白光發光方式…………………………4
2.1.3 LED 白光發光的論述………………………6
2.2 螢光粉的分析…………………………………6
2.2.1 螢光粉的組成………………………………6
2.2.2 螢光粉的發光原理…………………………10
2.3 YAG 螢光粉體的簡介…………………………11
2.3.1 文獻資料……………………………………11
2.3.2 YAG的結構分析………………………………12
第三章 實驗方法及步驟……………………………14
3.1 實驗目的………………………………………14
3.2 YAG:Ce3+螢光體摻雜其他化合物發光特性之量測實驗…………15
3.2.1 實驗材料……………………………………15
3.2.2 實驗材料的樣本配置………………………17
3.2.3 螢光粉摻雜其他元素粉末的量測實驗……19
3.2.3.1 PL 分光光譜儀分析……………………20
3.2.3.2 XRD分析……………………………………22
3.3 YAG:Ce3+螢光體吸附化合物發光特性之量測實驗………23
3.3.1 實驗材料……………………………………24
3.3.2 Sol-Gel 法吸附化合物於螢光粉表面的量測實驗……………24
3.3.2.1 SEM-EDS 分析……………………………26
3.3.2.2 PL 分光光譜儀分析……………………26
3.3.2.3 XRD晶相分析……………………………26
3.4 YAG:Ce3+螢光體吸附化合物於螢光膠體上的應用實驗………26
3.4.1 實驗材料…………………………………27
3.4.2 YAG:Ce3+螢光體吸附化合物於螢光膠體上的實驗…………27
3.4.2.1 PL 分光光譜儀分析…………………29
3.4.2.2 Integrating Sphere 儀器分析……29
3.4.2.3 UV-VIS 儀器分析……………………29
第四章 結果與討論……………………………30
4.1 YAG:Ce3+螢光體摻雜其他化合物發光特性之研究……30
4.1.1 PL 光致發光分析………………………30
4.1.1.1 混合物於玻璃管中的測驗結果………30
4.1.1.2 混合物於玻璃試片中的測驗結果………41
4.1.1.3 综合討論實驗結果………………………43
4.1.2 XRD 晶相分析………………………………44
4.2 YAG:Ce3+螢光體吸附化合物發光特性之研究………46
4.2.1 SEM-EDS 元素成份分析……………………46
4.2.2 PL 光致發光分析…………………………48
4.2.3 XRD 晶相分析………………………………50
4.3 YAG:Ce3+螢光體吸附化合物於螢光膠體上的應用………52
4.3.1 PL 光致發光分析……………………………53
4.3.2 Integrating Sphere 分析…………………56
4.3.3 UV-VIS 分析…………………………………57
4.4 討論Anti-reflective coating 應用於YAG:Ce3+螢光體表面………58
4.4.1 Anti-reflective coating 的應用…………………………58
4.4.2 Anti-reflective coating 的論述…………………………59
4.4.3 YAG:Ce3+螢光體表面的Anti-reflective coating…………………60
第五章 結論………………………………………61
參考文獻…………………………………………63
[1].Ledinside技術專欄,“淺談白光LED發光顏色與螢光粉的關係”(2007)
[2].Yung-Tang Nien, Kun-Ming Chen and In-Gann Chen,“Improved Photoluminescence of Y3Al5O12:Ce Nanoparticles by Silica Coating”, National Cheng Kung University, Tainan 70101, Taiwan, J. Am. Ceram. Soc., 93 1688–1691 (2010)
[3].S. Nakamura and S.F. Chichibu“Introduction to nitride semiconductor blue laser diodes and light emitting diodes”,London,UK:Taylor and Francis,2000.
[4].A. H. Mueller, M. A. Petruska, M. Achermann, D. J. Werder, E. A. Akhadov, D. D. Koleske, M. A. Hoffbauer and V. I. Klimov, “Multicolor Light-Emitting Diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers”,Nano Letters, vol. 5, pp. 1039-1044, 2005.
[5].S. Muthu, F. J. P. Schuurmans and M. D. Pashley, “Red, green, and blue LEDs for White Light illumination”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 333-338, 2002.
[6].C. M. Chang, Y. C. Fang and C. R. Lee, “A new design mixing R.G.B. LED (Red, Green, Blue Light Emitting Diode) for a modern LCD (Liquid Crystal Display) backlight system”, Proceedings of SPIE, vol. 6338, pp. 63380Q-1~11, 2006.
[7].E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart”, Science, vol. 308, pp. 1274-1278, 2005.
[8].S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Applied Physics Letters, vol. 64, pp. 1687-1689, 1994.
[9].D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin and S. L. Rudaz, “Illumination with solid state lighting 64 technology”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp.310-320, 2002.
[10].S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer, Berlin, 1997.
[11].S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Applied Physics Letters, vol. 64, pp.1687-1689, 1994.
[12].S. Nakamura, T. Mukai and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes”, Journal of Applied Physics, vol. 76, pp.8189-8191, 1994.
[13].S. Nakamura, N. Senoh, N. Iwasa and S. I. Nagahama, “High-brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with quantum well structures”, Japanese Journal of Applied Physics Part 2-Letters, vol. 34, pp. 797-799, 1995.
[14].K. Takahashi, N. Hirosaki, R.-J. Xie, M. Harada, K.-i.Yoshimura and Y. Tomomura, “Luminescence properties of blue La1xCexAl(Si6zAlz)(N10zOz) (z~1) oxynitride phosphors and their application in white light-emitting diode”, Applied Physics Letters, vol. 91, pp. 091923-091923, 2007.
[15].S, Muthu, Schuurmans, F. J. P. Schuurmans and M.D. Pashley, “Red, Green, and Blue LEDs for White Light illumination”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 333-338, 2002.
[16].Ropp, R. C. Luminescence and the solid state-2nd ed.; Elsevier: Amsterdam, 2004.
[17].劉如熹、劉宇恆,“發光二極體用氧氮螢光粉介紹”全華科技圖書股份有限公司(2006)
[18].劉如熹,“白光發光二極體製作技術-由晶粒金屬化至封裝”全華科技圖書股份有限公司(2008)
[19].Lambert, P. M. Mater. Res. Bull. 2000, 35, 383.65
[20].蔡俊欽,“高功率發光二極體模組光功率與光場高溫老化可靠度之研究”國立中山大學光電工程研究所 (2009)
[21].D. A. Skoog, F. J. Holler and T. A. Niemen, Principles of instrumental analysis, Harcourt Brace & Company, Orlando, 1998.
[22].C. Jeffrey Brinker,George W. Scherer , “Sol-gel science: the physics and chemistry of sol-gel processing”
[23].Haiyan Song, Young-Min Leem, Byoung-Gyu Kim and Yeon-Tae Yu ,“SiO2-coated ZnS submicrospheres with enhanced thermal stability and photoluminescence” Materials Science and Engineering: B, Volume 143, Issues1-3, 25 October 2007, Pages 70-75
[24].陳柏偉,“硫化鋅螢光粉混合與白光電激發光之研究”,國立成功大學材料科學及工程研究所,(2004)。
[25].洪志瑋,“硫化鋅共摻雜銅、錳高溫燒結之發光特性研究”,逢甲大學化學工程學系,(2007)。
[26].陳瑞傑1、鄭健民1、陳開煌2,“奈米螢光粉體矽酸鋅Zn2SiO4 摻雜銅Cu發光特性之研究”,1 南台科技大學電子工程、2 東方設計學院電子與資訊系
[27].wikipedia,“鋁元素的特性、分類等介紹”
[28].黃英勝1、林豐益2、吳宗勳1、鄭建民1、陳開煌3,“奈米螢光粉體矽酸鋅Zn2SiO4摻雜鋁Al發光特性之研究”,1南台科技大學電子工程、2國立高雄應用科技大學電子工程系、3東方設計學院電子與資訊系。
[29].羅俊仁,「照明用螢光粉」,電機月刊,第十二卷第五期,pp.236-243, 2002.
[30].R. Hofman, J. G. F. Westheim, I. Pouwel, T. Fransen, and P. J. Gellings,“FTIR and XPS Studies on Corrosion-resistant SiO2 Coatings as a Function of the Humidity During Deposition,”Surf. Interface Anal., 24 [1] 1–6 (1996).
[31].I. A. Siddiquey, T. Furusawa, M. Sato, and N. Suzuki,“Microwave-Assisted Silica Coating and Photocatalytic Activities of ZnO Particles,”Mater. Res. Bull.,66 43 [12] 3416–24 (2008).
[32].Y. T. Nien, K. H. Hwang, I. G. Chen, and K. Yu,“Photoluminescence Enhancement of ZnS:Mn Nanoparticles by SiO2 Coating,”J. Alloys Compd., 455[1–2] 519–23 (2008).
[33].S. Geller and M.A. Gilleo, “Structure and ferrimagnetism of yttrium and rareearth iron garnets”, Acta crystallogr. 10, 239 (1957) .
[34]. J.E. Geusic and L.G. Van Uitert, “Laser oscillations In Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets”, Appl. Phys. Lett., 4, 182 (1964) .
[35].余昭蓉,“摻加稀土元素鋁酸釔螢光體之合成與特性鑑定”,交通大學應用化學研究所碩士論文,1997 年。
[36]. S. Geller, “Crystal chemistry of the garnets”, Z. Kristallogr 125, 1(1967).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔