(3.227.235.183) 您好!臺灣時間:2021/04/18 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范鈞源
研究生(外文):Chun-Yuan Fan
論文名稱:聚合物穩定藍相液晶之電控遲滯與殘餘雙折射性特性與抑制方法之研究
論文名稱(外文):Studies of Hysteresis and Residual Birefringence in Polymer Stabilized Blue Phases LC Display
指導教授:林宗賢林宗賢引用關係
指導教授(外文):Tsung-Hsien Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:80
中文關鍵詞:殘餘穿透度遲滯高分子單體藍相
外文關鍵詞:monomerblue phasehysteresisresidual transmittance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藍相液晶顯示器原型機相較於傳統的液晶顯示器,其具有快速反應時間、廣視角和無需配向膜等優點,因此吸引許多研究團隊和公司投入藍相液晶顯示器的研究。由於藍相只能存在於狹窄的溫度範圍區間,所以我們將具有藍相的膽固醇液晶添加高分子單體,並且於藍相溫度照UV光進行聚合作用,來穩定藍相晶格結構使其溫度範圍延長,但是卻造成光電曲線有遲滯和殘餘穿透度等現象,使得藍相液晶顯示器的驅動複雜,而且對比度不佳。
本論文的研究目標為探討不同相分離條件和材料比例下所形成的聚合物網狀結構對聚合物穩定藍相光電曲線的影響,接著藉由掃描式電子顯微鏡圖像分析其造成光電曲線改變的原因,並且提出聚合物網狀結構與光電曲線之間關係的理論模型,我們從實驗結果得知,聚合物網狀結構的形貌、分佈和純藍相溫度範圍會影響聚合物穩定藍相的光電曲線,藉由選擇適當的相分離條件和材料比例,我們可以得到幾乎沒有遲滯和殘餘穿透度的藍相液晶顯示器,基於此研究成果,未來對藍相液晶顯示器的發展極有幫助。

關鍵字:藍相、高分子單體、遲滯、殘餘穿透度
Blue-Phase liquid crystal display possesses potential to become next generation display technology because of its submillisecond response time, alignment-layer-free process and wide view angle. Intrinsically, BP only operates across a narrow temperature range due to the influence of intrinsic structural defects. Recently, the temperature range of BP has been successfully extended beyond 60K through the polymer-stabilized effect. Unfortunately, the structure of the polymer networks poses a number of problems, for instance, hysteresis effect, which degrades the accuracy of grayscale control, and residual birefringence, which decreases the contrast ratio of LCDs.
This paper investigates the voltage-induced hysteresis and residual birefringence in the polymer-stabilized blue phase I and II, under various phase separation conditions and material ratio. Based on experiment result, the polymer network morphology, distribution and pure BP temperature can result in a variety of PSBP electro-optical properties. Hysteresis and residual transmittance free PSBP display could be achieved by choosing appropriated phase separation condition and material ratio.

Key word:blue phase、monomer、hysteresis、residual transmittance
摘要.................................................................iii
Abstract.............................................................iv
致謝................................................................. v
目錄.................................................................vi
圖目錄...............................................................ix
表目錄..............................................................xii
緒論................................................................xiii
第一章 液晶簡介
1.1 液晶的發現........................................................1
1.2 液晶的分類........................................................1
1.3 液晶的物理特性....................................................7
1.3.1 秩序參數....................................................8
1.3.2 折射率異向性................................................9
1.3.3 介電常數異向性.............................................12
1.3.4 Freedericks Transition..........................................13
1.3.5 黏滯係數異向性.............................................14
1.3.6 彈性連續體理論.............................................15
第二章 藍相簡介
2.1 藍相的發現.......................................................17
2.2 藍相的結構.......................................................17
2.3 藍相的光學特性...................................................20
2.4 藍相的判別方法...................................................21
2.5 聚合物穩定藍相...................................................24
2.6 電場效應.........................................................25
第三章 實驗方法與過程
3.1 材料介紹.........................................................29
3.1.1 向列型液晶JC-1041XX和5CB.................................29
3.1.2 旋性物質ZLI-4572...........................................29
3.1.3 高分子單體RM257和TMPTA..................................30
3.1.4 光起始劑DMPAP............................................31
3.2 樣品製作.........................................................31
3.2.1 藍相液晶藥品配置...........................................32
3.2.2 藍相液晶樣品備製...........................................33
3.2.3 藍相液晶樣品觀察...........................................33
3.2.4 聚合物穩定藍相樣品製作.....................................35
3.3 實驗觀察與量測...................................................35
3.3.1 藍相的反射光譜.............................................36
3.3.2 藍相的偏光顯微鏡圖像.......................................37
3.3.3 藍相的光電曲線.............................................37
3.3.4 藍相的聚合物網狀結構.......................................39
第四章 實驗結果與討論
4.1 藍相的光電特性...................................................41
4.1.1 藍相溫度範圍的判別.........................................41
4.1.2 不同量測溫度對V-T curve的影響...............................42
4.1.3 不同外加電場對V-T curve的影響...............................43
4.2 聚合物穩定藍相的光電特性.........................................44
4.2.1 溫度對布拉格反射波長的影響.................................44
4.2.2 紫外光的照射溫度對V-T curve的影響...........................46
4.2.3 紫外光的照射方向對V-T curve的影響...........................49
4.2.4 不同量測溫度對V-T curve的影響...............................51
4.2.5 不同外加電場對V-T curve的影響...............................53
4.3 不同向列型液晶比例對聚合物穩定藍相光電特性的影響.................54
4.3.1 向列型液晶比例對藍相溫度範圍的影響.........................54
4.3.2 藍相的溫度範圍對V-T curve的影響.............................55
4.4 不同高分子單體比例對聚合物穩定藍相光電特性的影響.................58
4.4.1 高分子單體比例對藍相溫度範圍的影響.........................59
4.4.2 高分子單體的分子結構對V-T curve的影響.......................60
第五章 總結與未來展望
5.1 結論.............................................................63
5.2 未來展望.........................................................63
參考文獻............................................................64
1. H. Kikuchi et al., IDW. 09, 619-622 (2009).
2. Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, J. Display Technology. 5, 250-256
(2009).
3. H. Kikuchi, H. Higuchi, Y. Haseba, and T. Iwata, SID Digest, 38, 1737-1740
(2007)
4. K.-M. Chen, S. Gauza, H. Xianyu, and S-T. Wu, J. Display Technology. 6, 49-51
(2010).
5. Z. Ge et al., Appl. Phys. Lett. 94, 101104-1~3 (2009).
6. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, Nat. Mater. 1,
64-68 (2002).
7. K.-M. Chen et al., J. Display Technology. 6, 318-322 (2010).
8. 陳怡君, “對膽固醇液晶雷射輸出大範圍調控之研究” , 國立成功大學, 物理
研究所 (2005).
9. 陳文政, “摻雜奈米粒子及偶氮染料的液晶薄膜之光配向研究及應用” , 國立
中山大學, 光電工程研究所 (2009).
10. P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals”, 2nd ed.,
Clarendon Press, Oxford (1993).
11. F. Reintzer, Monatsh. Chem. 9, 421 (1888).
12. L. M. Blinov and V, G. Chigrinov, “Electrooptic Effects in Liquid Crystal
Material”, Springer-Verlag Publishing Co., New York (1994).
13. B. Bahadur, “Liquid Crystals : Applications and uses”, 1, World Scientific,
Singapore (1990).
14. Letter from F. Reintzer to O. Lehmann, reported by H. Kelker, Mol. Cryst. Liq.
Cryst. 21, 1 (1973).
15. Andrew J. Lovinger, Karl R. Amundson and Don D. Davis, Chem. Mater. 6,
1726 (1994).
16. Grant R. Fowles, “Introduction to Modern Optics”, 2nd ed., University of Utah,
New York (1975).
17. I.-C. Khoo, “Liquid Crystals : physical properties and nonlinear optical
phenomera”, John Wiley & Sons, Inc (1995).
18. P. P. Crooker, in Chirality in Liquid Crystals (Eds: H.-S. Kitzerow, C.Bahr).
Springer, New York, 186-222 (2001).
19. S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, Phys. Rev. Lett.
46, 1216-1219 (1981).
20. M. J. Costello, S. Meiboom, and M. Sammon, Phys. Rev. A 29, 2957-2959
(1984).
21. A. Saupe, Mol. Cryst. Liq. Cryst. 7, 59 (1969)
22. G. W. Gray, P. A. Winsor, Liquid Crystals and Plastic Crystals, Ellis Hornreich,
S. Shtrikman, Phys. Rev. A 30, 3264 (1974).
23. K. Bergmann, P. Pollmann, G. Scherer, H. Stegemeyer, Z Naturf. 34a, 253
(1979).
24. W. Kossel, V. Loeck, H. Voges, Z. Phys. 94, 139 (1935).
25. D. Schwarzenbach, Cristallographie, Presses Polytechnique et Universitaires
romandes, Lausane (1993).
26. M. Christian Bohley, “Polarization Optics of Periodic Media”, Neuchatel (2004).
27. Deng-Ke Yang, S.-T. Wu,”Fundamentals of Liquid Cystal Devices”, John Wiley
& Sons, Ltd (2006).
28. 朱自強,王仕潘,蘇顯渝,現代光學教程,四川大學出版社,成都 (1990).
29. Y. Haseba et al., Adv. Mater., 17, 2311-2315 (2005).
30. H.-S. Kitzerow, “Blue phase come of age : a review”, Proc. SPIE. 7232 05
(2009).
31. L. Rao et al., Appl. Phys. Lett. 98, 081109 (2011).
32. T. Iwata et al., Mol. Cryst. Liq. Cryst., Vol. 470, pp. 11–18 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔