(3.236.228.250) 您好!臺灣時間:2021/04/17 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江至倫
研究生(外文):Chih-Lun Chiang
論文名稱:液體填充之雙折射光子晶體光纖
論文名稱(外文):Birefringent Liquid-Filled Photonic Crystal Fiber
指導教授:于欽平
指導教授(外文):Chin-Ping Yu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:97
中文關鍵詞:雙折射光纖液晶光子晶體光纖光子晶體光纖選擇性封孔技術光纖感測器
外文關鍵詞:selective blocking techniquePCFfiber sensorLCPCFbirefringent fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,雙折射光纖在通訊系統以及光纖感測器應用上受到相當大的矚目。在本
篇論文中,我們成功地利用選擇性封孔技術和真空吸引方法,將折射率液體以及
染料掺雜的液晶,分別選擇性地填入部份的光子晶體光纖的空氣孔洞當中,製作
了半填雙折射光子晶體光纖和中線結構的液晶光子晶體光纖。
我們首先量測了半填光子晶體光纖的彎曲損耗,得知當彎曲方向為0°方向
時,由於折射率差的挶限機制而有較小的損耗。另外,相較於全填的光子晶體光
纖,半填的結構因為減少液體填充孔洞的數量,可以得到較低的彎曲損耗。接著
我們利用了桑亞克光纖迴路(Sagnac fiber loop)來量測半填雙折射光子晶體光纖
以及中線的液晶光子晶體光纖的雙折射特性。我們得到半填光子晶體光纖的雙折
射率在波長 1411 nm 下為2.39×10^-4。此外,我們透過量測得到此半填光子晶體
光纖對溫度、張力、扭轉的敏感度分別為: -0.614 nm/°C、0.466 pm/με 和 -0.316
nm/deg。對於溫度、張力和扭轉的高敏感度顯示了此半填光子晶體光纖具有應用
在光纖感測器的能力。
另一方面,我們也量測了中線液晶光子晶體光纖在施加光線以及改變溫度下
雙折射率的變化。在外在光線施加下,我們觀察到雙折射率從2.8×10^-3 變化到
4.12×10^-3;而利用外在溫度,雙折射率變化可以從2.3×10^-3 改變到 3.3×10^-3。根
據量測結果,我們證明了此中線填充液晶光子晶體光纖之雙折射率具有光調變以
及溫度調變的能力。
Birefringent fibers have attracted considerable attention in recent years for their
potential applications in communication and sensing. In this thesis we selectively
infiltrate high-index liquids or liquid crystals (LCs) into specified air holes of the
photonic crystal fibers (PCFs) by using a selective blocking technique and the vacuum
filling method to form half-filled birefringent PCFs and central-filled liquid crystal
PCF (LCPCF).
We first measure the bending loss of the half-filled PCF. Smaller bending loss
was obtained as the PCF was bent in 0° due to the dominat index-guiding. Compared
with the full-filled PCF, the half-filled PCF possesses a smaller bending loss for the
reduction of liquid-filled air holes. The birefringent properties of the half-filled PCF
and the LCPCF were then measured in cooperation with the Sagnac fiber loop. We
can obtain the birefringence of the half-filled PCF of 2.39×10^-4 at λ = 1411 nm, and
the sensitivity to temperature, strain, and torsion can be obtained as -0.614 nm/°C,
0.466 pm/με, and -0.316 nm/deg. These large sensitivities make the half-filled PCF
useful in sensing applications.
We also measured the birefringence of the central-filled LCPCF with variant
laser irradiation and temperature. The optical and thermal birefringence variations
from 2.8×10^-3 to 4.12×10^-3 and from 2.3×10^-3 to 3.3×10^-3 can be oberserved,
respectively. The optically and thermally tunable birefringence of the central-filled
LCPCF was experimentally demonstrated.
1 Introduction 1
1.1 Polarization-maintaining Fibers ……........................1
1.2 Birefringent Photonic Crystal Fibers ……………….2
1.3 Fluid-filled PCFs ……………………………………...4
1.4 Chapter Outline ………………………………………5
2 Fabrication of Birefringent Photonic Crystal Fibers by Selective Fluid Infiltration 13
2.1 Overview …………………………………..................13
2.2 Selective Blocking Technique ……….....................13
2.3 Vacuum Filling Method …………….........................14
2.4 Birefringent Half-Filled Photonic Crystal Fiber .…15
2.5 Birefringent Central-Filled Photonic Crystal Fiber ....................................................................................16
3 Measurement of Birefringent Half-filled Photonic Crystal Fibers 28
3.1 Overview …………………………………………......28
3.2 Measurement for Bending Loss ………………….28
3.3 Sagnac Loop Interferometer .........….......................30
3.4 Measurement for Temperature Sensitivity …........35
3.5 Measurement for Strain Sensitivity ……………….36
3.6 Measurement for Torsion Sensitivity ……………..38
4 Photo-Controllable Birefringent Central-filled Photonic Crystal Fiber 58
4.1 Overview ……………………………………..............58
4.2 Liquid-Crystal-filled PCFs …………………………58
4.3 Optical Tunability of the Central-filled LCPCF …..60
4.4 Temperature Tunability of the Central-filled LCPCF.................................................................................62
5 Conclusions 72
Bibliography 74
[1] Ademgil, H., and S. Haxha, “Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses,” J. Lightwave Technol., vol. 26, pp. 441-448, 2008.
[2] Amezcua-Correa, R., F. Gerome, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Experss, vol. 16, pp. 1142-1149, 2008.
[3] Birks, T. A., J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961-963, 1997.
[4] Bo, D., Q. Zhao, L. Feng, G. Tuan, X. Lifang, L. Shuhong, and G. Hong, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt., vol. 45, pp. 7767-7771, 2006.
[5] Chen, D., and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett., vol. 19, pp. 185-187, 2007.
[6] Digonnet, M., S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol., vol. 18, pp. 3089-3097, 2007.
[7] Dong, X., H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, pp. 1113-1115, 2007.
[8] Du, F., Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett., vol. 85, pp. 2181-2183, 2004.
[9] Fang, X., and R. O. Claus, “Polarization-independent all-fiber wavelength-divison multiplexer on a Sagnac interferometer,” Opt. Lett., vol. 20, pp. 2146-2148, 1995.
[10] Fávero, F. C., S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” J. Sensors, vol. 10, pp. 9698-9711, 2010.
[11] Feng, S., O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization maintaining fiber bragg gratings,” Opt. Experss, vol. 16, pp. 11830-11835, 2008.
[12] Frazão, O., C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-Mode operation in birefringent fiber,” IEEE Photon. Technol. Lett., vol. 27, pp. 1277-1279, 2009.
[13] Frazão, O., J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a hi-bi photonic crystal fiber loop mirror,” IEEE Sens. J., vol. 7, pp. 1453-1455, 2007.
[14] Frazão, O., R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett., vol. 35, pp. 2777-2779, 2010.
[15] Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt., vol. 47, pp. 2835-2839, 2008.
[16] Gong, H., C. C. Chan, L. Chen, and X. Dong, “Strain sensor realized by using low-birefringence photonic-crystal-fiber-based Sagnac loop,” IEEE Photon. Technol. Lett., vol. 22, pp. 1238-1240, 2010.
[17] Han, Y. G., “Temperature-insensitive strain measurement using a birefringent interferometer based on a polarization-maintaining photonic crystal fiber,” Appl. Phys. B, vol. 95, pp. 383-387, 2009.
[18] Hansen, T. P., J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 588-590, 2001.
[19] Hsiao, V. K. S., and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Experss, vol. 16, pp. 12670-12676, 2008.
[20] Huang, Y., Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. vol. 85, pp. 5182-5184, 2004.
[21] Ioannidis, Z. K., R. Kadiwar, and I. P. Giles, “Anisotropic polarization maintaining optical fiber ring resonators,” J. Lightwave Technol., vol. 14, pp. 377-384, 1996.
[22] Ju, J., H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, “Selective opening of airholes in photonic crystal fiber,” Opt. Lett., vol. 35, pp. 3886-3888, 2010.
[23] Kim, D. H., and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Experss, vol. 12, pp. 4490-4495, 2004.
[24] Kim, H. M., T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 22, pp. 1539-1541, 2010.
[25] Knight, J. C., “Photonic crystal fibres,” Nature, vol. 424, pp. 847-851, 2003.
[26] Kuhlmey, B. T., B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol., vol. 27, pp. 1617-1630, 2009.
[27] Kumagai, T., A. Ogura, W. Ohnuki, K. Tan, and T. Sato, “Optical intrusion detection sensor with polarization maintaining fiber,” in Proceeding of AIP Conference, vol. 1055, pp. 46-49, 2008.
[28] Kumar, A., and R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett., vol. 14, pp. 817-819, 1989.
[29] Lee, C. H., C. H. Chen, C. L. Kao, C. P. Yu, S. M. Yeh, W. H. Cheng, and T. H. Lin, “Photo and electrical tunable effects in photonic liquid crystal fiber,” Opt. Experss, vol. 18, pp. 2814-2821, 2010.
[30] Lee, C. R., J. D. Lin, Y. J. Huang, S. C. Huang, S. H. Lin, and C. P. Yu, “All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber,” Opt. Experss, vol. 19, pp. 9676-9689, 2011.
[31] Li, J., S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys., vol. 96, pp. 19-24, 2004.
[32] Liou, J. H., S. S. Huang, and C. P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commum., vol. 283, pp. 971-974, 2010.
[33] Liu, J. H., and C. P. Yu, “Loss-reduced internally liquid-filled photonic crystal fibers,” Proc. SPIE, vol. 7609, pp. 76091M, 2010.
[34] Liu, Y., B. M. A. Rahman, and K. T. V. Grattan, “Thermal-stress-induced birefringence in bow-tie optical fibers,” Appl. Opt., vol. 33, pp. 5611-5616, 1994.
[35] Mada, H., and K. Osajima, “Time response of a nematic liquid-crystal cell in a switched dc electric field,” J. Appl. Phys., vol. 60, pp. 3111-3113, 1986.
[36] Marques, B. V., O. Frazao, S. Mendonc, J. Perez, M. B. Marques, S. F. Santos, and J. M. Baptista, “Optical current sensor based on metal coated hi-bi fiber loop mirror,” Microwave Opt. Tech. Lett.,vol. 50, pp. 780-782, 2008.
[37] Murao, T., K. Saitoh, and M. Koshiba, “Detailedtheoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Experss, vol. 17, pp.7615-7629, 2009.
[38] Nasilowski, T., T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B, vol. 81, pp. 325-331, 2005.
[39] Nguyen, L. V., D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Experss, vol. 16, pp. 11369-11375, 2008.
[40] Noda, J., K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol., vol. 4, pp. 1071-1089, 1986.
[41] Noordegraaf, D., L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S.T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett., vol. 33, pp. 986-988, 2008.
[42] Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, pp. 1325-1327, 2000.
[43] Tuominen, J., H. Hoffren, and H. Ludvigsen, “All-optical switch based on liquid-
crystal infiltrated photonic bandgap fiber in transverse configuration,” J. Eur. Opt. Soc., vol. 2, pp. 07016, 2007.
[44] Wang, J., K. Zheng, J. Li, L. S. Liu, G. X. Chen, and S. S. Jian, “Research on tunable erbium-doped ring fiber laser based on a high-birefringence Sagnac loop: theory and experiment,” Acta Physica Sinica, vol. 58, pp. 7695-7700, 2009.
[45] Wang, Y. P., X. L. Tan, W. Jin, S. J. Liu, D. Q. Ying, and Y. L. Hoo, “Improved bending property of half-filled photonic crystal fiber,” Opt. Express, vol. 18, pp. 12197-12202, 2010.
[46] Wei, L., T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett., vol. 21, pp. 1633-1635, 2009.
[47] Wolinski, T. R., K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol., vol. 17, pp. 985-991, 2006.
[48] Wolinski, T. R., S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol., vol. 18, pp. 3061-3069, 2007.
[49] Zhang, H., B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Optica Applicata, vol. 40, pp. 209-217, 2010.
[50] Zhao, C. L., X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photon. Technol. Lett., vol. 16, pp. 2535-2537, 2004.
[51] Zu, P., C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol., vol. 22, pp. 5204-5207, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔