|
[1] Ademgil, H., and S. Haxha, “Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses,” J. Lightwave Technol., vol. 26, pp. 441-448, 2008. [2] Amezcua-Correa, R., F. Gerome, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Experss, vol. 16, pp. 1142-1149, 2008. [3] Birks, T. A., J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961-963, 1997. [4] Bo, D., Q. Zhao, L. Feng, G. Tuan, X. Lifang, L. Shuhong, and G. Hong, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt., vol. 45, pp. 7767-7771, 2006. [5] Chen, D., and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett., vol. 19, pp. 185-187, 2007. [6] Digonnet, M., S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol., vol. 18, pp. 3089-3097, 2007. [7] Dong, X., H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, pp. 1113-1115, 2007. [8] Du, F., Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett., vol. 85, pp. 2181-2183, 2004. [9] Fang, X., and R. O. Claus, “Polarization-independent all-fiber wavelength-divison multiplexer on a Sagnac interferometer,” Opt. Lett., vol. 20, pp. 2146-2148, 1995. [10] Fávero, F. C., S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” J. Sensors, vol. 10, pp. 9698-9711, 2010. [11] Feng, S., O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization maintaining fiber bragg gratings,” Opt. Experss, vol. 16, pp. 11830-11835, 2008. [12] Frazão, O., C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-Mode operation in birefringent fiber,” IEEE Photon. Technol. Lett., vol. 27, pp. 1277-1279, 2009. [13] Frazão, O., J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a hi-bi photonic crystal fiber loop mirror,” IEEE Sens. J., vol. 7, pp. 1453-1455, 2007. [14] Frazão, O., R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett., vol. 35, pp. 2777-2779, 2010. [15] Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt., vol. 47, pp. 2835-2839, 2008. [16] Gong, H., C. C. Chan, L. Chen, and X. Dong, “Strain sensor realized by using low-birefringence photonic-crystal-fiber-based Sagnac loop,” IEEE Photon. Technol. Lett., vol. 22, pp. 1238-1240, 2010. [17] Han, Y. G., “Temperature-insensitive strain measurement using a birefringent interferometer based on a polarization-maintaining photonic crystal fiber,” Appl. Phys. B, vol. 95, pp. 383-387, 2009. [18] Hansen, T. P., J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 588-590, 2001. [19] Hsiao, V. K. S., and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Experss, vol. 16, pp. 12670-12676, 2008. [20] Huang, Y., Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. vol. 85, pp. 5182-5184, 2004. [21] Ioannidis, Z. K., R. Kadiwar, and I. P. Giles, “Anisotropic polarization maintaining optical fiber ring resonators,” J. Lightwave Technol., vol. 14, pp. 377-384, 1996. [22] Ju, J., H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, “Selective opening of airholes in photonic crystal fiber,” Opt. Lett., vol. 35, pp. 3886-3888, 2010. [23] Kim, D. H., and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Experss, vol. 12, pp. 4490-4495, 2004. [24] Kim, H. M., T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 22, pp. 1539-1541, 2010. [25] Knight, J. C., “Photonic crystal fibres,” Nature, vol. 424, pp. 847-851, 2003. [26] Kuhlmey, B. T., B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol., vol. 27, pp. 1617-1630, 2009. [27] Kumagai, T., A. Ogura, W. Ohnuki, K. Tan, and T. Sato, “Optical intrusion detection sensor with polarization maintaining fiber,” in Proceeding of AIP Conference, vol. 1055, pp. 46-49, 2008. [28] Kumar, A., and R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett., vol. 14, pp. 817-819, 1989. [29] Lee, C. H., C. H. Chen, C. L. Kao, C. P. Yu, S. M. Yeh, W. H. Cheng, and T. H. Lin, “Photo and electrical tunable effects in photonic liquid crystal fiber,” Opt. Experss, vol. 18, pp. 2814-2821, 2010. [30] Lee, C. R., J. D. Lin, Y. J. Huang, S. C. Huang, S. H. Lin, and C. P. Yu, “All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber,” Opt. Experss, vol. 19, pp. 9676-9689, 2011. [31] Li, J., S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys., vol. 96, pp. 19-24, 2004. [32] Liou, J. H., S. S. Huang, and C. P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commum., vol. 283, pp. 971-974, 2010. [33] Liu, J. H., and C. P. Yu, “Loss-reduced internally liquid-filled photonic crystal fibers,” Proc. SPIE, vol. 7609, pp. 76091M, 2010. [34] Liu, Y., B. M. A. Rahman, and K. T. V. Grattan, “Thermal-stress-induced birefringence in bow-tie optical fibers,” Appl. Opt., vol. 33, pp. 5611-5616, 1994. [35] Mada, H., and K. Osajima, “Time response of a nematic liquid-crystal cell in a switched dc electric field,” J. Appl. Phys., vol. 60, pp. 3111-3113, 1986. [36] Marques, B. V., O. Frazao, S. Mendonc, J. Perez, M. B. Marques, S. F. Santos, and J. M. Baptista, “Optical current sensor based on metal coated hi-bi fiber loop mirror,” Microwave Opt. Tech. Lett.,vol. 50, pp. 780-782, 2008. [37] Murao, T., K. Saitoh, and M. Koshiba, “Detailedtheoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Experss, vol. 17, pp.7615-7629, 2009. [38] Nasilowski, T., T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B, vol. 81, pp. 325-331, 2005. [39] Nguyen, L. V., D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Experss, vol. 16, pp. 11369-11375, 2008. [40] Noda, J., K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol., vol. 4, pp. 1071-1089, 1986. [41] Noordegraaf, D., L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S.T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett., vol. 33, pp. 986-988, 2008. [42] Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, pp. 1325-1327, 2000. [43] Tuominen, J., H. Hoffren, and H. Ludvigsen, “All-optical switch based on liquid- crystal infiltrated photonic bandgap fiber in transverse configuration,” J. Eur. Opt. Soc., vol. 2, pp. 07016, 2007. [44] Wang, J., K. Zheng, J. Li, L. S. Liu, G. X. Chen, and S. S. Jian, “Research on tunable erbium-doped ring fiber laser based on a high-birefringence Sagnac loop: theory and experiment,” Acta Physica Sinica, vol. 58, pp. 7695-7700, 2009. [45] Wang, Y. P., X. L. Tan, W. Jin, S. J. Liu, D. Q. Ying, and Y. L. Hoo, “Improved bending property of half-filled photonic crystal fiber,” Opt. Express, vol. 18, pp. 12197-12202, 2010. [46] Wei, L., T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett., vol. 21, pp. 1633-1635, 2009. [47] Wolinski, T. R., K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol., vol. 17, pp. 985-991, 2006. [48] Wolinski, T. R., S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol., vol. 18, pp. 3061-3069, 2007. [49] Zhang, H., B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Optica Applicata, vol. 40, pp. 209-217, 2010. [50] Zhao, C. L., X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photon. Technol. Lett., vol. 16, pp. 2535-2537, 2004. [51] Zu, P., C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol., vol. 22, pp. 5204-5207, 2011.
|