(3.230.143.40) 您好!臺灣時間:2021/04/21 07:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐瑋志
研究生(外文):Wei-Chih Hsu
論文名稱:以硒化法製作CI(G)S薄膜太陽電池
論文名稱(外文):Fabrication of CI(G)S Thin-film Solar Cell by Selenization
指導教授:曾百亨曾百亨引用關係
指導教授(外文):Bae-Heng Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:93
中文關鍵詞:慢速硒化製程二元硒化物快速硒化製程化學組成CIGSCIS轉換效率
外文關鍵詞:binary seleniderapid selenization processchemical compositionCIGSCISslow selenization processconversion efficiency
相關次數:
  • 被引用被引用:4
  • 點閱點閱:185
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用EPMA和TEM-EDS對定比組成的共蒸鍍製備的CIS薄膜進行成份分析,得到量測組成比例的標準差增加的結果,顯示出從微米到奈米不同尺度下化學組成比例浮動變劇烈的現象。
利用EPMA和TEM-EDS對以硒化法製備的CIS試片分析。也有微米到奈米尺度改變下化學組成比例浮動變大的現象。另外,比較不同硒化製程的EPMA量測結果;以二元硒化物疊層為前驅物接著進行快速硒化或慢速硒化製備CIS的EPMA量測之標準差都比單元素疊層為前驅物的快速硒化製備的CIS還小。
以二元硒化物前驅物疊藉由快速升溫進行硒化製程形成CIS,但是Mo薄膜殘留應力導致快速升溫時CIS薄膜破裂。將Mo厚度降低改善此情況,卻產生基板彎曲的現象。藉由調整升溫參數無法完全改善之。
以二元硒化物前驅物疊層,改在真空成長腔?奡ㄗ垶e蒸氣,進行慢速升溫硒化合成CIS。改變不同的Cu/In比例完成太陽電池元件均有光伏打效應。並以此法製備Cu/III族比例為0.92的CIGS(CuIn1-xGaxSe)薄膜。
Cu/In為0.92的元件在AM1.5下量測得到最高轉換效率可達9.29 %,開路電壓(Voc)0.398 V,短路電流密度(Jsc)41.14 mA/cm2,填充因子(FF) 54.58 %。CIGS元件最高轉換效率可達4.42 %,開路電壓0.461 V,短路電流密度22.23 mA/cm2,填充因子為41.53 %。結果顯示Ga的加入確實提升了開路電壓。

Since the phase stability region of CuInSe2 (CIS) extends as wide as a few atomic percent, composition variation in a microscopic scale is nature to this material and can be detected by EPMA or TEM-EDS. As the detection volume is kept as small as possible (e.g. we used an electron probe with a diameter of 3nm to measure a TEM specimen thinned by a focused ion beam to a 80 nm thickness), the composition data fluctuate rather significantly. For a near-stoichiometric CIS film prepared by co-evaporation or a selenized film using binary selenides as precursor, the composition variations in a nanometer scale were quite distinct. Due to the tedious procedures for making TEM specimens and doing measurements, we normally used EPMA for the composition analysis. Although the composition was measured in a micrometer scale, its variation still can be detected and expressed by the standard deviation. Our results showed that the selenized films prepared by using binary selenides as precursors (they were used to make the device in this work) had much better composition uniformity as compared with the films selenized from the elemental precursors. We also found that even the time period for the selenization process was short (rapid thermal selenization) or long (conventional selenization), the composition variation did not make any changes.
Since there still has problems for making devices by using rapid thermal selenization, we successfully fabricated the CIS thin-film solar cells through the conventional selenization processes. The I-V characteristics of the best CIS cell is in the following: Voc=0.398 V, Jsc=41.14 mA/cm2, fill factor (FF)=54.58%, efficiency= 9.29%. We also made a CIGS cell and found that the open circuit voltage was increased to 0.461 V. However, the efficiency was 4.42%. It still needs more effort to boost its short circuit current and fill factor.

論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
表目錄 viii
圖目錄 ix
一、簡介與文獻回顧 1
1.1 前言 1
1.2 CI(G)S材料發展背景與組成特性 2
1.3 共蒸鍍製程 6
1.4 硒化製程 7
1.5 太陽電池元件 14
1.5.1 太陽電池工作原理 14
1.5.2 CI(G)S太陽電池元件製程簡介 16
1.5.3 Mo電極層探討 18
1.6 實驗動機與目的 19
二、實驗製程方法與分析儀器介紹 21
2.1 實驗製程與原理 21
2.1.1 蒸鍍系統 21
2.1.2 三槍平行濺鍍系統 22
2.2 分析方法與儀器介紹 22
2.2.1 X-ray 繞射儀 22
2.2.2 掃描式電子顯微鏡 23
2.2.3 雙束型聚焦離子束 23
2.2.4 穿透式電子顯微鏡 23
2.2.5 電子微探儀 24
2.2.6 拉曼光譜儀 24
2.2.7 四點探針 25
2.2.8 反射光譜儀 25
2.2.9 I-V量測 25
三、實驗步驟與方法 26
3.1 太陽電池元件實驗製程 26
3.2 基板準備工作 26
3.3 鉬金屬(Mo)背電極製備 27
3.4 主吸收層鍍製 27
3.5 CdS薄膜鍍製 29
3.6 元件其他層薄膜鍍製 31
3.7 元件各層薄膜測試片 31
四、實驗結果與討論 32
4.1 化學組成分析 32
4.1.1 定比組成試片成份分析 32
4.1.2 硒化試片成份分析 36
4.1.3 成分分析結果與討論 40
4.2 快速硒化製程與元件製作 41
4.2.1 減少Mo背電極厚度製作元件結果 43
4.2.2 改變快速硒化升溫條件的實驗結果 47
4.2.3 CIS快速硒化製程討論 53
4.3 CIS慢速硒化製程與元件製作 56
4.3.1 CIS慢速硒化薄膜特性分析 57
4.3.2 不同組成比例CIS慢速硒化元件製作 58
4.4 CIGS慢速硒化製程與元件製作 63
4.5 慢速硒化製程討論 67
4.5.1 慢速硒化元件性質比較 67
4.5.2 製程不穩定性討論 68
五、結論 71
六、參考文獻 72
七、附錄 75


1.Miguel A. Contreras, Brian Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, Rommel Noufi, Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells. Prog. Photovolt. 7, 311-316 (1999)
2.Markus E. Beck, Amy Swartzlander-Guest, Rick Matson, James Keane, Rommel Noufi, CuIn(Ga)Se2-based devices via a novel absorber formation process Solar Energy Materials & Solar Cell 64 p.135-165 (2000)
3.Jet P., Vladimir A., Thin Film Solar Cells Fabrication Characterization and Application, New York: John Wiley & Son (2007)
4.A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann, A. N. Tiwari, Development of Thin-film Cu(In,Ga)Se2 and CdTe Solar Cells, Prog. Photovolt: Res. Appl, 12 p.93-111 (2004)
5.C. H. Champness, Melt-grown CuInSe2 and photovolatic cells, Journal of Materials Science: Materials in Electronics 10 (1999) 605-622
6.L. L. Kazmerski, F. R. White,t and G. K. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells. Appl. Phys. Lett., 29(4), 268-270. (1976)
7.R.A. Mickelsen and Wen S. Chen, High photocurrent polycrystalline thin film CdS/CuInSe2 solar cell. Appl. Phys. Lett., 36(5), 371-373. (1980)
8.Antonio Luque., Steven Hegedus, Handbook of Photovotlaic Science and Engineering II, England: John Wiley & Son (2003)
9.R.D. Wieting, CIS manufacturing at the megawatt scale. 29th IEEE Photovolatic Specialists Conference, 478-483 (2002).
10.S. B. Zhang, Su-Huai Wei, and Alex Zunger, Defect physics of the CuInSe2 chalcopyrite semiconductor., Physical Review B, Volume 57, No 16, 15 April 1998-II
11.F. Abou-Elfotouh, D. J. Dunlavy and T.J. Coutts, Intrinsic defect states in CuInSe2 single crystals, Solar Cell Vol. 27 p.237-246 (1989)
12.Y. Yan, R. Noufi, K.M. Jones, K. Ramanathan, M. M. Al-Jassim and B. J. Stanbery, Chemical fluctuation-induced nanodomains in Cu(In,Ga)Se2 films, Applied Physics Letters 87, p.121904 (2005)
13.Yoshihiro Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications, New York: Springer (2004)
14.何昱暘,CuInSe2薄膜快速硒化製程之改良研究,國立中山大學材料科學研究所碩士論文(2010)
15.Grindle S, Smith C, Mittleman S, Appl. Phys. Lett. 35(1), 24–26 (1979).
16.Chu T, Chu S, Lin S, Yue J, J. Electrochem. Soc. 131, 2182–2185 (1984).
17.M. Kaelin, D. Rudmann, A.N. Tiwari, Low cost processing of CIGS thin film solar cells, Solar Energy 77 749–756 (2004)
18.Sung Chan Park, Doo Youl Lee, Byung Tae Ahn ,Kyung Hoon Yoon, Jinsoo Song, Fabrication of CuInSe2 films and solar cells by the sequential evaporation of In2Se3and Cu2Se binary compounds, Solar Energy Materials & Solar Cells 69 99-105 (2001)
19.Karg F., Probst V., Harms H., Rimmasch J., Riedl W., Kotschy J., Holz J., Treichler R., Eibl O., Kiendl A novel rapid-thermal-processing for CIS thin-film solar cells 23th IEEE PVSC: 441, (1993).
20.Synthesis and characterization of CuInSe2 thin films from Cu, In and Se stacked layers using a closed graphite box, F.O. Adurodija , M.J. Carter, R. Hill, Solar Energy Materials and Solar Cells 40 359-369 (1996)
21.S. Yamanaka, M. Tanda, K. Horino, K. Ito, A. Yamada, M. Konagai and K. Takahashi, 21st IEEE Photovoltaic Specialists Conf., Las Vegas, , p. 758. (1990)
22.F.O. Adurodija, M.J. Carter and R. Hill, “A novel method of synthesizing P-CulnSe, thin films from the stacked elemental layers using a closed graphite box”, IEEE, (1994)
23.簡唯倫,CuInSe2薄膜硒化製程之研究,國立中山大學材料科學研究所碩士論文(2008)
24.A.Brummer, V.Honkima¨ki, P.Berwian, V.Pr obst, J.Palm , R.Hock, “Formation of CuInSe2 by the annealing of stacked elemental layers—analysis by in situ high-energy powder diffraction”, Thin Solid Films 437 297–307 (2003)
25.W.K. Kim, E.A. Payzant, S. Yoon, T.J. Anderson, In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction, Journal of Crystal Growth 294 231–235 (2006)
26.Chakrabarti, D.J., Laughlin, D.E.: Bull., 1981, Alloy Phase Diagrams 2 305. (1981)
27.H. Okamoto, In-Se phase diagram, Journal of Phase Equilibria and Diffusion, , Vol. 25 No. 2 (2004)
28.T.J. Anderson, O.D. Crisalle, S.S. Li, and P.H. Holloway, Future CIS Manufacturing Technology Development Finial Report 8 July 1998-17 October, p.4-50-4-52 (2001)
29.潘家叡,CuInSe2薄膜快速硒化製程之研究,國立中山大學材料科學研究所碩士論文 (2009)
30.劉鈰誼,二元硒化合物預鍍層進行CIGS快速硒化製程之研究,國立中山大學材料科學研究所碩士論文 (2010)
31.John H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells, Thin Solid Films 260 p.26-31 ( 1995)
32.D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F.V. Kurdesau, A.N. Tiwari, M. Dfbeli, Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells, Thin Solid Films 480–481 p.433– 438 (2005)
33.John A. Thornton, D. W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 171 5-31 (1989)
34.田民波,薄膜技術與薄膜材料,台北市: 五南圖書出版社(2007)
35.張振昌,化學水浴沉積法成長硫化鎘薄膜之研究,國立中山大學材料科學研究所碩士論文 (2005)
36.H. Moualkia, S. Hariech, M.S. Aida, Structural and optical properties of CdS thin films grown by chemical bath deposition, Thin Solid Films 518 1259–1262 (2009)
37.D.J. Yang and B.H. Tseng, 1998, "A Photoluminescence Study of an MBE-grown CuInSe2 Film with a Near-stoichiometric Composition", Institute of Physics Conference Series, Vol. 152, pp. 305-308 (1998)
38.Yukiko Kamikawa-Shimizu, Shuuhei Shimada, Manabu Watanabe, Akimasa Yamad, Keiichiro Sakurai, Shogo Ishizuka, Hironori Komaki, Koji Matsubara, Hajime Shibata, Hitoshi Tampo, Keigou Maejima, and Shigeru Niki, Effects of Mo back contact thickness on the properties of CIGS solar cells Phys. Status Solidi A 206, No. 5, 1063–1066 (2009)
39.M. Lammer, U. Klemm, M. Powalla, Sodium co-evaporation for low temperature Cu(In,Ga)Se2 deposition, Thin Solid Films 387 3336 (2001).
40.F. Kessler, D. Herrmann, M. Powalla, Approaches to flexible CIGS thin-film solar cells, Thin Solid Films 480–48 491– 4981 (2005)
41.V. Probsta,, W. Stetter , W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K.-D. Ufert, B. Freienstein, H. Cerva, F.H. Karg, Rapid CIS-process for high efficiency PV-modules: development towards large area processing, Thin Solid Films 387 262267 (2001).
42.R. W. BirkmireI, L. C. Dinetta, P. G. Lasswell, J. D. Meakin and J. E. Phillips, High Efficiency CuInSe2 Based Heterojunction solar cells: fabrication and results Solar Cells, 16 419 - 427. (1986)
43.Y. Tanaka, N. Akema, T. Morishita, D. Okumura, K. Kushiya, Proceedings of the 17th EC Photovoltaic Solar Energy Conference, p2. 989 (2001)
44.M. Marudachalam, R. W. Birkmire, and H. Hichri, J. M. Schultz, A. Swartzlander and M. M. Al-Jassim, Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films, J. Appl. Phys. 82 (6), p2896-2905 (1997)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔