1. G. I. Meijer, “Materials science - Who wins the nonvolatile memory race?”,
Science, vol. 319, pp. 1625-1626, 2008.
2. 蔡濬名,“氧化鋅薄膜於非揮發電阻式記憶體特性之研究.”, 國立清華大學,
碩士論文, 2008.
3. M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Mitkova, “A low-power
nonvolatile switching element based on copper-tungsten oxide solid electrolyte.”,
IEEE Trans. Nanotechnol, vol. 5, pp. 535-544, 2006.
4. L. Zhang, et al. “The parasitic effects induced by the contact in RRAM with MIM
structure.”, ICSICT Conference, 4734687, pp.932-935, 2008.
5. C. Schindler, S. C. P. Thermadam, R. Waser, M. N. Kozicki, “Bipolar and unipolar
resistive switching in Cu-doped SiO2.”IEEE Trans. Electron Devices, vol. 54, pp.
2762-2768, 2007.
6. 何英豪,“SiOx 薄膜之電阻式記憶體電阻轉換特性研究.”, 國立清華大學,
碩士論文, 2009.
7. 許峻銘, “氧化銅薄膜於非揮發電阻式記憶體特性之研究.”,國立高雄應用
科技大學, 碩士論文, 2009.
8. D. A. Buck, “Ferroelectrics for Digital Information Storage and Switching.”,
Massachusetts Institute of Technology, Dept. of Electrical Engineering, Master
Thesis, 1952.
9. S. Thakoor, A. P. Thakoor, “Optically Addressed Ferroelectric Memory with
Nondestructive Readout.”, Appl. Opt, vol. 34, pp.3136-3144, 1995.
10. 鄭佩慈,“鐵電材料之特性與應用.”, 儀科中心簡訊, 2005 年.11. 葉林秀、李佳謀、徐明豐、吳德和, “磁阻式隨機存取記憶體技術的發展—
現在與未來.”, 物理雙月刊, 26 卷, pp. 607- 619, 2004 年.
12. D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, “The missing
memristor found.”, Nature, vol. 453, pp.80-83, 2008.
13. K. Szot, W. Speier, G. Bihlmayer, R. Waser, “Switching the electrical resistance
of individual dislocations in single-crystalline SrTiO3.”, Nat. Mater., vol. 5, pp.
312-320, 2006.
14. Q. Ling, et al. “Polymer electronic memories: Materials, devices and
mechanisms.”, Prog. Polym. Sci., vol. 33, pp. 917-978, 2008.
15. T. W. Hickmott, “Memory States in Electroformed Mim Diodes - Comment.”,
Int. J. Electron., vol. 78, pp. 641-644, 1995.
16. K. M. Kim, , B. J. Choi, C. S. Hwang, “Localized switching mechanism in
resistive switching of atomic-layer-deposited TiO2 thin films.”, Appl. Phys.
Lett. , vol. 90, 242906, 2007.
17. A. Sawa, “Resistive switching in transition metal oxides.”, Mater. Today, vol.
11, pp. 28-36, 2008.
18. C. Liang, K. Terabe, T. Hasegawa, M. Aono, “Resistance switching of an
individual Ag2S/Ag nanowire heterostructure.”, Nanotechnology, vol. 18,
485202, 2007.
19. Shyh-Shyuan Sheu, et al. “Fast-Write Resistive RAM (RRAM) for Embedded
Applications.”, IEEE Des. Test Comput., vol. 28, pp. 64-71, 2011.
20. K. J. Lee, et al. “A 90 nm 1.8 V 512 Mb Diode-Switch PRAM With 266 MB/s
Read Throughput.”, IEEE J. Solid-State Circuits, vol. 43, pp. 150-162, 2008.
21. R. Takemura, et al. “A 32-Mb SPRAM With 2T1R Memory Cell, Localized
Bi-Directional Write Driver and `1''/`0'' Dual-Array Equalized Reference
Scheme.”, IEEE J. Solid-State Circuits, vol. 45, pp. 869-879, 2010.
22. S. Dietrich, et al. “A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control.”, IEEE J. Solid-State Circuits, vol. 42, pp.
839-845, 2007.
23. Meng-Fan Chang, Shin-Jang Shen, “A Process Variation Tolerant Embedded
Split-Gate Flash Memory Using Pre-Stable Current Sensing Scheme.”, J.
Solid-State Circuits, vol. 44, pp. 987-994, 2009.
24. S. Sze, K. K. Ng, Physics of semiconductor devices ( 3rd edition ) ,
Wiley-Blackwell, 2007.
25. S. Zaima, T. Furuta, Y. Koide, Y. Yasuda, M. Lida, “Conduction Mechanism of
Leakage Current in Ta2o5 Films on Si Prepared by Lpcvd.”, J. Electrochem.
Soc., vol. 137, pp. 2876-2879, 1990.
26. V. Dostal, “A supercritical carbon dioxide cycle for next generation nuclear
reactors.”, Massachusetts Institute of Technology, Doctorate Dissertation, 2004.
27. http://sfe.vemt.bme.hu/angol/supercritical.html.
28. K. Zosel, Separation with Supercritical Gases: Practical Applications.,
Angewandte Chemie International Edition in English, vol. 17, pp. 702 -709, 1978.
29. 謝振剛, “氧化鋅鋁透明導電膜光、電特性之研究.”, 國立中央大學,碩
士論文, 2005.
30. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of instrumental analysis.,
Saunders College New York, 1980.
31. 汪建民,材料分析, 中國材料科學學會, pp.501-522, 民87 年.
32. C. Tsai, et al. “A low temperature fabrication of HfO2 films with supercritical CO2
fluid treatment.”, J. Appl. Phys., vol. 103, 074108 , 2008.
33. R. Waser, R. Dittmann, G. Staikov, & K. Szot, “Redox-Based Resistive Switching
Memories - Nanoionic Mechanisms, Prospects, and Challenges.”, Adv Mater ,
vol. 21, 2632, 2009.
34. L. Goux, , J. G. Lisoni, Xin Peng Wang, M. Jurczak, D. J. Wouters, “Optimized
Ni Oxidation in 80-nm Contact Holes for Integration of Forming-Free and
Low-Power Ni/NiO/Ni Memory Cells.”, IEEE Trans. Electron Devices, vol. 56,
pp. 2363-2368, 2009.
35. D. Ielmini, Y. Zhang, “Analytical model for subthreshold conduction and
threshold switching in chalcogenide-based memory devices.”, J. Appl. Phys., vol.
102, 054517, 2007.
36. R. K. Singh, A. Srinivasan, “Bioactivity of ferrimagnetic
MgO–CaO–SiO2–P2O5–Fe2O3 glass-ceramics.”, Ceram. Int., vol. 36, pp.
283-290, 2010.
37. R. Rai, T. D. Senguttuvan, S. T. Lakshmikumar, “Study of the electronic and
optical bonding properties of doped SnO2.”, Comput. Mater. Sci, vol. 37, pp.
15-19, 2006.
38. D. W. Ball, “Structure and vibrational spectra of isotopomers of SnOH and
OSnH.”, J. Mol. Struct. Theochem, vol. 626, pp. 217-221, 2003.
39. C.D. Wanger, J.F. Moulder, L.E. Davis, W.M. Riggs, Handbook of X-ray
Photoelectron Spectroscopy (1st edition), Perking-Elmer Corporation(Physical
Electronics Division)., 1979.
40. L. Y. Liang, Z. M. Liu, H. T. Cao, et al. “Improvement of Phase Stability and
Accurate Determination of Optical Constants of SnO Thin Films by Using Al2O3
Capping Layer.”, ACS Appl. Mater. Interfaces, vol. 2, pp. 1060-1065, 2010.
41. K. Fujita, A. Oya, R. Benoit, F. Beguin, “Structure and mechanical properties of
methyltrimethoxysilane-treated taeniolite films.”, J. Mater. Sci., vol. 31, pp.
4609-4615, 1996.
42. Y. Kanedo, Y. Suginohara, Lasurface Database, Publi, no. 135, pp. 285–89, 1977.
43. N. Khakpash, A. Simchi, P. Kohi, “Gas phase synthesis of SnOx nanoparticles and
characterization.”, J. Alloys Compd., vol. 470, pp. 289-293, 2009.