(3.235.41.241) 您好!臺灣時間:2021/04/21 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳敏甄
研究生(外文):Min-Chen Chen
論文名稱:前瞻金屬氧化物電阻式記憶體與薄膜電晶體元件之製作與電性特性研究
論文名稱(外文):Study on the Fabrication and Electrical Characteristics of the Advanced Metal-oxide-based Resistive Random Access Memory and Thin-Film Transistors Devices
指導教授:張鼎張
指導教授(外文):Ting-Chang Chang
學位類別:博士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:141
中文關鍵詞:氧化物薄膜薄膜電晶體電阻式記憶體
外文關鍵詞:Thin-Film Transistors (TFTs)Oxide thin filmResistive Random Access Memory (RRAM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
平面顯示器被廣泛的使用於消費性電子產品上,一般的平面顯示器主要是利用薄膜電晶體來控制畫素的灰階,而薄膜電晶體的特性決定平面顯示器的好壞。相較於現有的液晶顯示器(Liquid Crystal Displays,LCDs),主動式有機發光二極體顯示器(Active-Matrix Organic Light-Emitting Diode Display,AMOLED)由於具有自發光、廣視角、高色彩對比度等優點,因此被視為下一世代平面顯示之重要技術。而有機發光二極體(OLED)屬於一種電流驅動元件,因此同時具有非晶矽(a-Si)薄膜電晶體均勻性與多晶矽(poly-Si)薄膜電晶體高驅動電流優點之氧化物薄膜電晶體,已被預期應用於未來的顯示器產品上。此外,由於氧化物薄膜為一種寬能隙的材料,因此具有良好的可透光性,所以亦可製作出全透明的元件,未來將可應用於各種不同的透明電子產品上。
本論文研究的氧化物半導體主要以氧化鋅為基底,並將此材料製作成薄膜電晶體。在本論文第一部份,我們提出利用超臨界二氧化碳流體技術來改善氧化鋅薄膜電晶體的特性。由於超臨界流體是一種同時具有氣體高擴散性與液體高負載能力的流體,因此可有效攜帶水分子進入濺鍍沉積的氧化鋅薄膜內,於150 °C的低溫環境下鈍化薄膜內晶界間的斷鍵(缺陷)。實驗結果指出,氧化鋅薄膜電晶體在經過低溫二氧化碳超臨界流體處理後,電性可獲得大幅的改善,例如: threshold voltage降低、on current提升、sub-threshold slope 改善等等。
接下來探討銦鎵鋅氧薄膜電晶體元件應用於主動式液晶顯示器與有機發光二極體顯示器操作電壓下之電性可靠度。由實驗結果顯示,我們發現當施加汲極偏壓的情況下,外界氧氣易受到汲極正偏壓影響,而吸附於靠近汲極端之背通道表面,形成寄生電阻,造成汲極端產生額外能障,進而影響載子傳導路徑。此外,我們並由電容-電壓量測方式分析做進一步的分析驗證。
另一方面,隨著元件尺寸微縮化的發展,傳統的浮停閘極記憶體(Floating gate)結構面臨了瓶頸。在奈米尺度下,等比例微縮下的穿隧氧化層厚度不再具有足夠的阻絕效果,儲存於浮停閘內的電荷容易再透過穿隧效應回到矽基板而失去元件記憶能力。另外,在經過長時間而高速的操作後,亦容易使過薄的穿隧氧化層產生漏電路徑,因而導致記憶體元件的失效。因此各式新穎的記憶體結構在近年來被相繼發表,其中電阻式記憶體為目前最具發展潛力的非揮發性記憶元件,其具有結構簡單、耗損能量低、操作電壓低、密度高、操作速度快、耐久度高、儲存時間長和非破壞性存取等優點,極有機會取代NAND Flash及DRAM。因此,本論文也研究探討銦鎵鋅氧薄膜於非揮發性電阻式記憶體之應用,並提出其相關的機制解釋。在未來的應用上,將有機會將薄膜電晶體及非揮發性記憶體元件整合在一起,應用於系統面板上。
我們利用銦鎵鋅氧薄膜(IGZO)搭配銦錫氧化物(ITO)電極,成功製作ITO/IGZO/ITO結構之全透明電阻式記憶體元件。此結構之記憶體元件可以得到良好的雙極(bipolar)電阻轉換特性,並且擁有很好的電阻切換特性。其元件主要是依據氧空缺所形成的電阻絲做傳導。另一方面,也利用銦鎵鋅氧薄膜搭配鈦(Ti)及鉑(Pt)電極,成功製作Ti/IGZO/TiN與Pt/IGZO/TiN結構之電阻式記憶體元件,並探討電極效應對電阻式記憶體切換行為之影響及其物理機制。藉由電性量測,在Ti或TiN電極端操作之記憶體可以得到雙極(bipolar)電阻轉換特性,主要是因為Ti或TiN電極可做為氧離子的儲存槽,氧離子可藉由不同極性的偏壓從Ti或TiN電極端進出,進而形成及斷裂電阻絲通道;然而在Pt電極端操作之記憶體,卻顯現單極(unipolar)電阻轉換特性。此現象是由於Pt電極為惰性金屬,無法儲存氧離子,造成電阻式記憶體元件必須藉由熱焦耳的型式來吸引氧離子和氧空缺復合,因而造成單極性操作的電阻式記憶體行為。最後,由於其轉態機制與氧離子及氧空缺的復合/形成有關,因此我們並於沉積銦鎵鋅氧薄膜的製程中變化氧氣的含量,探討氧離子在元件內扮演的角色及對元件切換行為之影響。

In first part, the supercritical CO2 (SCCO2) fluid technology is employed to improve the device properties of ZnO TFT. The SCCO2 fluid exhibits liquid-like property, which has excellent transport ability. Furthermore, the SCCO2 fluid has gas-like and high-pressure properties to diffuse into the nanoscale structures without damage. Hence, the SCCO2 fluid can carry the H2O molecule effectively into the ZnO films at low temperature and passivate traps by H2O molecule at low temperature. The experimental results show that the on current, sub-threshold slope, and threshold voltage of the device were improved significantly.
Next, the electrical degradation behaviors and mechanisms under drain bias stress of a-IGZO TFTs were investigated. A current crowding effect and an obvious capacitance-voltage stretch-out were observed after stress. During the drain-bias stress, the oxygen would be absorbed on the back channel near the drain region of IGZO film. Therefore, the carrier transport is impeded by the additional energy barrier near drain region induced by the adsorbed oxygen, which forms a depletion layer to generate the parasitism resistance.
We also investigated the RRAM device based on IGZO film, and proposed the related physical mechanism models. The IGZO RRAM will be very promising for integration with IGZO TFTs for advanced system-on-panel display applications to be a transparent embedded system. In this part, the transparent RRAM device with ITO/IGZO/ITO structure was fabricated. The proposed device presents an excellent bipolar resistive switching characteristic and good reliability. The bipolar switching mechanism of our device is dominated by the formation and rupture of the oxygen vacancies in a conduction path.
The influence of electrode material on resistance switching characteristic is investigated through Pt/IGZO/TiN and Ti/IGZO/TiN structure. As the bias applied on the Ti or TiN, the Ti or TiN electrode can play the role of oxygen reservoir to absorb/discharge oxygen ions. Therefore, the device presents a bipolar resistive switching characteristic. However, as the bias applied on the Pt electrode, the device presents a unipolar resistive switching characteristic. Because the Pt electrode can’t store the oxygen ion, the device should use the joule heating mode to rupture the conduction path and present the unipolar resistive switching characteristic.
Finally, the resistive switching properties of IGZO film deposited at different oxygen content were investigated, since the resistance switching behaviors are related to the formation and rupture of filaments composed of oxygen vacancies in the IGZO matrix. Experiment results show that the HRS current decreases when the oxygen partial pressure gradually increases. Based on the XPS analysis, these phenomena are related to the non-lattice oxygen concentration. With increasing oxygen ratio, the filaments will rupture completely through the abundant non-lattice oxygen inducing oxidation, which leads to HRS current decrease and an increase in the memory window.

Chinese Abstract I
English Abstract IV
Acknowledgment VII
Contents IX
Figure Captions XII
Table Captions XVI

Chapter 1. Introduction
1.1 Overview of thin-film transistors 1
1.1.1 Indium gallium zinc oxide thin-film transistors 3
1.2 Overview of nonvolatile memory device 5
1.2.1 Resistive random access memory (RRAM) 7
1.2.1.1 The materials of RRAM 9
1.2.1.2 The switching mechanism of RRAM 10
1.3 Thesis organization 12

Chapter 2. A low-temperature method for improving the performance of sputter-deposited ZnO thin-film-transistors with supercritical fluid
2.1 Introduction 30
2.2 Experiment 32
2.3 Results and Discussion 33
2.4 Conclusion 38

Chapter 3. Analyzing the current crowding effect induced by oxygen absorption of amorphous InGaZnO thin film transistor by capacitance-voltage measurements
3.1 Introduction 51
3.2 Experiment 52
3.3 Results and Discussion 53
3.4 Conclusion 57

Chapter 4. Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory
4.1 Introduction 62
4.2 Experiment 63
4.3 Results and Discussion 64
4.4 Conclusion 68

Chapter 5. Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films
5.1 Introduction 77
5.2 Experiment 78
5.3 Results and Discussion 79
5.4 Conclusion 82

Chapter 6. Influence of oxygen partial pressure on characteristics of indium gallium zinc oxide resistance random access memory
6.1 Introduction 90
6.2 Experiment 91
6.3 Results and Discussion 92
6.4 Conclusion 96

Chapter 7. Conclusions 102

References 105
Vita 120
Publication List 121



Chapter 1
[1.1] A. Nathan, G. R. Chaji, and S. J. Ashtiani, J. Disp. Technol., 1, 267 (2005).
[1.2] W. E. Howard, J. Soc. Inform. Display, 3(3), 127 (1995).
[1.3] J. H. Lee, W. J. Nam, B. K. Kim, H. S. Choi, Y. M. Ha, and M. K. Han, IEEE Electron Device Lett., 27, 830 (2006).
[1.4] T. Kamiya, K. Nomura, and H. Hosono, J. Disp. Technol., 5, 468 (2009).
[1.5] H. Hosono, Journal of Non-Crystalline Solids, 352, 851 (2006).
[1.6] C. Kim, S. Kim, and C. Lee, Jap. J. Appl. Phys., 1, 8501 (2005).
[1.7] T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010).
[1.8] J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, IEEE Electron Device Lett., 29, 1309 (2008).
[1.9] Y. Ohta, Y. Chikama, T. Hara, Y. Mizuno, T. Aita, M. Takei, M. Suzuki,O. Nakagawa, Y. Harumoto, H. Nishiki, and N. Kimura, Proc. Int. Display Workshop, 1685 (2009).
[1.10] J.-H. Lee, D.-H. Kim, D.-J. Yang, S.-Y. Hong, K.-S. Yoon, P.-S. Hong, C.-O. Jeong, H.-S. Park, S. Y. Kim, S. K. Lim, and S. S. Kim, Proc. SID Dig. Tech. Papers, 625 (2008).
[1.11] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, Appl. Phys. Lett., 90, 262106 (2007).
[1.12] D. P. Gosain and T. Tanaka, Proc. AM-FPD’08, 291 (2008).
[1.13] D. Kang, H. Lim, C. Kim, and I. Song, Appl. Phys. Lett., 90, 192101 (2007).J.
[1.14] S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 92, 072104 (2008).
[1.15] D. Kahng, S. M. Sze, Bell Syst. Tech. Journal., 46, 1288 (1967).
[1.16] “International Technology Roadmap for Semiconductors, 2009 update” at http://www.itrs.net/Links/2009ITRS/Home2009.htm
[1.17] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proc. Of IEEE, 85, 1248 (1997).
[1.18] M. H. White, D. A. Adams, J. Bu, IEEE Circuits and Devices Magazine., 16, 22 (2000).
[1.19] M. H. White, Y. Yang, A. Purwar, and M. L. French, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[1.20] J. S. Witters, G. Groeseneken, and H. E. Maes, IEEE Jounal of Solid State Circuits, 1372 (1989).
[1.21] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[1.22] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, IEEE Electron Device Lett., 18, 278 (1997).
[1.23] Y. C. King, T. J. King, and C. Hu, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
[1.24] T. Kojima, T. Sakai, T. Watanabe, H. Funakubo, K. Saito, and M. Osada, Appl. Phys. Lett., 80 , p.2746 (2007).
[1.25] N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, Journal of Physics Letters, 91, 5246 (2002).
[1.26] T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, Appl. Phys. Lett., 88, 122114 (2006).
[1.27] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett., 85, 4073 (2004).
[1.28] C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, and T. Y. Tseng, IEEE Electron Device Letters, 26 (6), 351 (2005).
[1.29] C. Y. Lin, C. Y. Wu, C. Y. Wu, C. Hu, and T. Y. Tseng, Journal of The Electrochemical Society, 154(9), G189-G192 (2007).
[1.30] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, IEEE Electron Device Letters, 28 (5), 366 (2007).
[1.31] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi,M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, and H. Hwang, Appl. Phys. Lett., 90, 42107 (2007).
[1.32] G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo, Appl. Phys. Lett., 92, 222103 (2007).
[1.33] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, Journal of Physics Letters, 98, 33715 (2005)
[1.34] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, IEDM Tech., 193, (2002).
[1.35] A. Sawa, Mater. Today, 11, 28 (2008).
[1.36] W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, IEEE Electron Device Letters, 29, 434 (2008).
[1.37] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung and I. T. Moon,” IEDM Tech. Dig., 587 (2004)
[1.38] T. W. Hickmott , J. Appl. Phys., 33, 2669 (1962).
[1.39] G. Dearnaley, A. M. Stoneham and D. V. Morgan, Rep. Prog. Phys., 33, 1129 (1970).
[1.40] D. P. Oxley, Electrocomponent Sci. Technol., 3, 217 (1977).
[1.41] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, In: IEDM technical digest, 2, 193 (2002).
[1.42] T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama and M. Aono, Appl. Phys. Lett., 82, 3032 (2003).
[1.43] K. Terabe, T. Hasegawa, T. Nakayama and M. Aono, Nature, 433, 47 (2005).
[1.44] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung and I. K. Yoo, Appl. Phys. Lett., 85, 5655 (2004).
[1.45] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg and S. Tiedke, Appl. Phys. Lett., 98, 033715 (2005).
[1.46] S. Q. Liu, N. J. Wu and A. Ignatiev, Appl. Phys. Lett., 76, 2749 (2000).
[1.47] Y. Watanabe, J. G. Bednorz, A. Bietsch, Gerber Ch, D. Widmer and A. Beck, Appl. Phys. Lett., 78, 3738 (2001).
[1.48] C. Schindler, S. C. P. Thermadam, R. Waser and M. N. Kozicki, IEEE Trans. Electron Dev., 54, 2762 (2007).
[1.49] Y. P. Yang, and T. Y. Tseng, J. Appl. Phys., 81, 6762 (1997).
[1.50] B. P. Andreasson, M. Janousch, U. Staub, G. I. Meijer, and B. Delley, Mater. Sci. and Eng., B 144, 60 (2007).
[1.51] C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, T. Y. Tseng, IEEE Electron Device Letters, 26 (6), 351 (2005).
[1.52] C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, T. Y. Tseng, IEEE Electron Device Letters, 27 (9), 725 (2006).
[1.53] D. Hsu, J. G.Lin, and W. F. Wu, J. Magn. Magn. Mater., 310, 978(2007).
[1.54] H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E. H. Lee, W. Kim, Y. Park, I. K. Yoo and H. Hwang, IEDM Tech. Dig., 758 (2005).
[1.55] K. Fujiwara, T. Yajima, Y. Nakamura, M. J. Rozenberg and H. Takagi, Appl. Phys. Exp., 2, 081401 (2009).


Chapter 2
[2.1] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys,. 93, 1624 (2003).
[2.2] V. Craciun, J. Elders, J.G.E. Gardenievs and I.W. Boyd, Appl. Phys. Lett., 65, 2963 (1994).
[2.3] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A.Shimizu, Jpn. J. Appl. Phys., Part 2 36, 1453 (1997).
[2.4] M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, Thin Solid Films, 485, 403 (2002).
[2.5] B. J. Norris, J. Anderson, J. F. Wager, and D. A. Keszler, J. Phys. D, 36, L105 (2003).
[2.6] G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, and R. T. Williams, Appl. Phys. Lett., 80, 1195 (2002)
[2.7] K. B. Sundaram and A. Khan, Thin Solid Films, 87, 295 (1997).
[2.8] H. S. Bae, J. H. Kim, and S. Im, Electrochem. Solid-State Lett., 7, G279 (2004).
[2.9] J. Y. Lee, Y. S. Choi, W. H. Choi, H. W. Yeom, Y.K. Yoon, J. H. Kim, and S. Im, Thin Solid Films, 112, 420 (2002).
[2.10] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett., 86, 13503-1 (2005).
[2.11] K. Zosel and Angew, Chem. Int. Ed. Engl., 17, 702 (1978).
[2.12] P. M. F. Paul and W. S. Wise, London: Mills&Boon Ltd., (1971).
[2.13] L.W. Lai and C.T. Lee, Mater Chem Phys, 110, 393 (2008).
[2.14] S.J. Henley, M.N.R. Ashfold and D. Cherns, Surf. Coat. Tech., 177, 271 (2004).
[2.15] C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke and S.J. Chua, Nanotechnology, 15, 856 (2004).
[2.16] L. J. Meng, C. P. Moreira, and M. P. d. Santos, Appl. Surf. Sci. 78, 57 (1994)
[2.17] Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, J. Appl. Phys., 88, 498 (2000).
[2.18] M. S. Oh, D. K. Hwang, J. H. Lim, Y. S. Choi, and S. J. Park, Appl. Phys. Lett., 91, 212102 (2007).
[2.19] C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000).
[2.20] C. Kilic and A. Zunger, Appl. Phys. Lett., 81, 73 (2002).
[2.21] J. B. L. Martins, C. A. Taft, S. K. Lie and E. Longo, J. Mol. Struct. (Theochem), 528, 161 (2000).
[2.22] A. Suresh, P. Wellenius, and J. F. Muth, Tech. Dig. - Int. Electron Devices Meet., 587 (2007).
[2.23] M. J. Power, C. V. Berkel, A. R. Franklin, S. C. Deane, and W. I. Milne, Phys. Rev. B, 45, 4160 (1992).






Chapter 3
[3.1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
[3.2] P. Görrn, F. Ghaffari, T. Riedl, and W. Kowalsky, Solid-State Electron. 53, 329 (2009).
[3.3] C. Chen, K. Abe, T. C. Fung, H. Kumomi, and J. Kanicki, Jpn. J. Appl. Phys. 48 03B025 (2009).
[3.4] K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U. I. Chung, and J. H. Lee, Appl. Phys. Lett. 97, 113504 (2010).
[3.5] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006).
[3.6] A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502 (2008).
[3.7] K. Hoshino, D. Hong, H. Q. Chiang, and J. F. Wager, IEEE Trans. Electron Devices 56, 1365 (2009).
[3.8] J. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin, and Y. G. Mo, Appl. Phys. Lett. 95, 123502 (2009).
[3.9] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, Appl. Phys. Lett. 96, 242105 (2010).
[3.10] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, IEEE Trans. Elec. Devices 48, 845 (2001).
[3.11] C. F. Weng, T. C. Chang, Y. H. Tai, S. T. Huang, K. T. Wu, C. W. Chen, W. C. Kau, T. F. Young, Mat. Chem. Phys. 116, 344 (2009).
[3.12] D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, and J. G. Chung, Appl. Phys. Lett. 90, 192101 (2007).
[3.13] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 92, 072104 (2008).
[3.14] H. R. Park, D. Kwon, and J. D. Cohen, J. Appl. Phys. 83, 8051 (1998).




















Chapter 4
[4.1] G. I. Meijer, Science 319, 1625 (2008).
[4.2] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, Tech. Dig. - Int. Electron Devices Meet. 2004, 587.
[4.3] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).
[4.4] C. T. Tsai, T. C. Chang, P. T. Liu, Y. L. Cheng, and F. S. Huang, Appl. Phys. Lett. 93, 052903 (2008).
[4.5] S. Q. Liu, N. J. Wu, and A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000).
[4.6] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, Appl. Phys. Lett. 92, 022110 (2008).
[4.7] J. W. Seo, J. W. Park, K. S. Lim, J. H. Yang, and S. J. Kang, Appl. Phys. Lett. 93, 223505 (2008).
[4.8] S. Kim, H. Moon, D. Gupta, S. Yoo, and Yang-Kyu Choi, IEEE Trans. Electron Device 56, 4 (2009).
[4.9] L. Shi, D. Shang, J. Sun, and B. Shen, Appl. Phys. Express 2, 101602 (2009).
[4.10] N. Xu, L. F. Liu, X. Sun, C. Chen, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, Semicond. Sci. Technol. 23, 075019 (2008).
[4.11] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, Appl. Phys. Lett. 86, 093509 (2005).
[4.12] X. Wu, P. Zhou, J. Li, and L. Y. Chen, Appl. Phys. Lett. 90, 183507 (2007).
[4.13] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006).
[4.14] J. H. Na, M. Kitamura, and Y. Arakawa, Appl. Phys. Lett. 93, 063501 (2008).
[4.15] W. Lim, S. H. Kim, Y. L. Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko, J. Electrochem. Soc. 155, H383 (2008).
[4.16] L. E. Yu, S. Kim, M. K. Ryu, S. Y. Choi, and Y. K. Choi, IEEE Electron Device Lett. 29, 331 (2008).
[4.17] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, Appl. Phys. Lett. 91, 012907 (2007). [ISI]
[4.18] M. K. Yang, J. W. Park, T. K. Ko, and J. K. Lee, Appl. Phys. Lett. 95, 042105 (2009)
[4.19] G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, Thin Solid Films 517, 4007 (2009).
[4.20] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, Appl. Phys. Lett. 92, 232112 (2008).







Chapter 5
[5.1] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and D. Buchanan, IEDM Tech. Dig., 521 (1995).
[5.2] T. C. Chang, S. T. Yan, P. T. Liu, C. W. Chen, S. H. Lin, and S. M. Sze, Electrochem. Solid-State Lett. 7(1), G17 (2004).
[5.3] R. Waser, and M. Aono, Nature Mater., 6, 833 (2007).
[5.4] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, Tech. Dig. - Int. Electron Devices Meet., 587 (2004).
[5.5] C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, Appl. Phys. Lett., 91, 223510 (2007).
[5.6] J. W. Seo, J. W. Park, K. S. Lim, J. H. Yang, and S. J. Kang, Appl. Phys. Lett., 93, 223505 (2008).
[5.7] L. Shi, D. Shang, J. Sun, and B. Shen, Appl. Phys. Expres., 2, 101602 (2009).
[5.8] H. Peng, and T. Wu, Appl. Phys. Lett., 95, 152106 (2009).
[5.9] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett., 9, 1636 (2009).
[5.10] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, Appl. Phys. Lett., 92, 022110 (2008).
[5.11] A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett., 94, 133502 (2009).
[5.12] M. J. Lee, S. I. Kim, C. B. Lee, H. Yin, S. E. Ahn, B. S. Kang, K. H. Kim, J. C. Park, C. J. Kim, I. Song, S. W. Kim, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, and Y. Park, Adv. Funct. Mater., 19, 1587 (2009).
[5.13] A. Sawa, Mater. Today., 11, 28 (2008).
[5.14] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Ham, J. F. Kang, and B. Yu, In: VLSI symposium technical digest., 100 (2008).
[5.15] M. Mandl, H. Hoffman, and P. Kucher, J. Appl. Phys., 68, 2127 (1990).
[5.16] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, Appl. Phys. Lett., 89, 223509 (2006).
[5.17] D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, I. K. Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U.-I. Chung, J. T. Moon, and B. I. Ryu, Appl. Phys. Lett., 88, 202102 (2006).












Chapter 6
[6.1] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys., 100, 051606 (2006).
[6.2] S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerrera, IEEE Trans. Magn., 35, 2814 (1999).
[6.3] S. Lai, IEDM Tech. Dig., 255 (2003).
[6.4] R. Waser, and M. Aono, Nature Mater., 6, 833 (2007).
[6.5] K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, M. H. Lee, J. H. Yoon, and C.S. Hwang, Nanotechnology, 21, 305203 (2010).
[6.6] H. B. Lv, M. Yin, X. F. Fu, Y. L. Song, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, IEEE Electron Device Lett., 29, 309 (2008).
[6.7] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, Appl. Phys. Lett., 92, 022110 (2008).
[6.8] J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, Appl. Phys. Lett., 95, 013503 (2009).
[6.9] A. Sato, M. Shimada, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 518, 1309 (2009).
[6.10] M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and S. M. Sze, Electrochem. Solid-State Lett., 13, H191 (2010).
[6.11] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, Appl. Phys. Lett., 96, 262110 (2010).
[6.12] W. Y. Chang, Y. T. Ho, T. C. Hsu, F. Chen, M. J. Tsai, and T. B. Wua, Electrochem. Solid-State Lett., 12, H135 (2009).
[6.13] F. Larachi, J. Pierre, A. Adnot, and A. Bernis, Appl. Surf. Sci., 195, 236 (2002).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃瑞明,歐陸法系下律師社會角色之探討,法學叢刊,136期。
2. 黃瑞明,歐陸法系下律師社會角色之探討,法學叢刊,136期。
3. 黃瑞明,歐陸法系下律師社會角色之探討,法學叢刊,136期。
4. 黃瑞明,歐陸法系下律師社會角色之探討,法學叢刊,136期。
5. 黃瑞明,歐陸法系下律師社會角色之探討,法學叢刊,136期。
6. 黃三榮,論我國律師事務所現有形態之檢討及未來型態之展望,律師通訊,197期。
7. 黃三榮,論我國律師事務所現有形態之檢討及未來型態之展望,律師通訊,197期。
8. 黃三榮,論我國律師事務所現有形態之檢討及未來型態之展望,律師通訊,197期。
9. 黃三榮,論我國律師事務所現有形態之檢討及未來型態之展望,律師通訊,197期。
10. 黃三榮,論我國律師事務所現有形態之檢討及未來型態之展望,律師通訊,197期。
11. 黃旭田,律師大量增加對律師執業及台北律師公會之影響,律師雜誌,152期。
12. 黃旭田,律師大量增加對律師執業及台北律師公會之影響,律師雜誌,152期。
13. 黃旭田,律師大量增加對律師執業及台北律師公會之影響,律師雜誌,152期。
14. 黃旭田,律師大量增加對律師執業及台北律師公會之影響,律師雜誌,152期。
15. 黃旭田,律師大量增加對律師執業及台北律師公會之影響,律師雜誌,152期。
 
系統版面圖檔 系統版面圖檔