(18.206.177.17) 您好!臺灣時間:2021/04/23 04:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王均浩
研究生(外文):Jun-Hau Wang
論文名稱:射頻濺鍍氧化鋅薄膜在矽(111)基板上之研究:氧化鋁緩衝層之效應及pin二極體之形成
論文名稱(外文):RF-Sputtering of ZnO thin films on Si(111) substrates : the effects of Al2O3 buffer layers and the pin diode formation
指導教授:陳永松陳永松引用關係
指導教授(外文):Quark Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:79
中文關鍵詞:射頻濺鍍pin二極體氧化鋁氧化鋅
外文關鍵詞:sputteringpin diodeAl2O3ZnO
相關次數:
  • 被引用被引用:2
  • 點閱點閱:172
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以磁控射頻濺鍍方法讓n-型氧化鋅薄膜磊晶成長於p-型矽基板上,藉以形成p-n二極體,期望以此組成有效的光電元件。由於在矽基板表面上存有一層數奈米厚,非晶形的原生氧化矽(SiOX),會影響磊晶薄膜品質。為使氧化鋅與矽間有更好的介面,得先將用晶形的金屬氧化物取代此非晶形原生氧化矽層: 作法是在腔體中分別濺鍍20秒(4 nm)、40秒(8 nm)、60秒(12 nm)的純鋁,其後分別在腔體中以450℃加熱處理20分鐘、40分鐘、60分鐘,期待鋁與氧化矽氧化還原產生有晶形之氧化鋁緩衝層,再繼續於450℃成長氧化鋅層。九個如此製備成的樣品,其後在於900℃進行快速退火(Rapid Thermal Annealing),觀察退火程序對氧化鋅及氧化鋁品質的影響。測量方式包括以穿透式電子顯微鏡(Transmission Electron Microscopy)觀察氧化鋁、氧化矽之消長,與及氧化鋅、氧化鋁、氧化矽之間各介面的結構與缺陷;X光繞射(X-ray diffraction)分別以ω-2θ掃描、搖擺曲線(rocking curve)來觀察氧化鋅成長在不同退火時間之緩衝層之晶面方向與晶體品質;光致螢光光譜(Photoluminescence)試圖看出氧化鋅的氧缺陷和近能帶邊緣發光峰值。透明n-ZnO與 p-Si中間夾有一絕緣氧化鋁層形成的pin結構因高絕緣氧化鋁可作為本質層使少數載子積聚效果增加,從而延長載子傳遞時間,量測元件pin接面之電流電壓特性,可比較漏電及介面電荷所造成的效應,進而瞭解所得pin二極體効能之優劣。由電容電壓特性量測中之高頻曲線亦可探知氧化鋅、氧化鋁介面與氧化鋅、氧化矽介面電子積聚情形,以及這兩不同介面對氧化鋅所造成之影響,諸如缺陷、漏電之相互關係,與及氧化鋁取代氧化矽後矽表面之陷阱電荷是否減少等等。
關鍵字:射頻濺鍍、氧化鋅、氧化鋁, pin二極體

RF magnetron sputtering has been employed to deposit n-type epitaxial zinc oxide thin films on p-type silicon substrates to form p-n diode structures. Commonly found on silicon, native SiOx layers, typically of a few nanometer thick, would hinder the epitaxial growth of ZnO. In this thesis work, a crystalline metal oxide layer was introduced as a buffer layer by redox reaction between a metal layer and the native SiO2. Aluminum was first sputtered for 20 seconds (4 nm), 40 seconds (8 nm), 60 seconds (12 nm) to produce three sets of samples. Each set was then annealed in situ at 450℃ for 20 minutes, 40 minutes, 60 minutes, respectively, to generate 9 different fabrication conditions meant to ignite a redox reaction between aluminum and the silicon oxide. All samples were treated for comparison by rapid thermal annealing to 900℃, intended to improve the crystalline quality of the buffer layer and thus the epitaxial zinc oxide. Means to characterize the samples included (1) cross-sectional TEM (Transmission Electron Microscopy) observations of the interfaces and defects in various regions of the formed material or device structures; (2) x-ray crystallography via ω-2θ and rocking scans in regards to the perfection of the crystal structures and the relative film-substrate orientations; (3) photoluminescence spectroscopy, which showed oxygen deficiency in the ZnO epitaxial thin films as judged by the peaks of near-edge luminescence and mid-gap impurity states. The resulted material structure is a pin diode with a transparent n-ZnO layer sandwiching in the middle an aluminum oxide insulating layer with the p-Si substrate. The electrically insulating aluminum oxide layer serves to increase the minority carrier accumulation effect, extending carriers’ effective life times and hence enhancing the light emission efficiency. Measuring the current-voltage characteristics of the pin device structures provides insights into the interface charges, while high-frequency capacitance-voltage curves helps give a glimpse of the interfaces between ZnO and Al2O3 or AlOx, as well as those between Al2O3 or AlOx and silicon, all concerning the electronic accumulations at each interface.
Keywords: sputtering, ZnO, Al2O3 , pin diode.

論文審定書
誌謝
中文摘要
英文摘要
第一章、緒論................................................................................................................ 8
第二章、儀器原理...................................................................................................... 10
2-1濺鍍原理(sputtering)..................................................................................... 10
2-1-1電漿(plasma)................................................................................. 10
2-1-2磁控濺鍍系統 .................................................................................... 10
2-1-3射頻濺鍍 ............................................................................................ 11
2-2 X光繞射原理(X-ray diffraction) ................................................................. 11
2-2-1 /2θ繞射 .......................................................................................... 12
2-2-2 Rocking Curve掃描........................................................................... 12
2-3 PN接面二極體之電流電壓特性(I-V Characteristic) .................................. 13
2-4電容電壓特性(C-V Characteristic) .............................................................. 15
2-4-1高頻量測 ............................................................................................ 18
2-4-2樣品之電容模型 ................................................................................ 18
2-5光激發螢光原理(Photoluminescence) .................................................... 20
第三章、實驗設計...................................................................................................... 22
3-1基板清洗與前置作業 ................................................................................... 22
3-2薄膜的成長 ................................................................................................... 24
第四章、實驗結果與分析.......................................................................................... 26
4-1樣品成長參數............................................................................................... 26
4-2 場發射穿透式電子顯微鏡影像.................................................................. 28
4-3 X光繞射 ....................................................................................................... 46
4-3-1 A系列之XRD&Rocking結果 ........................................................ 46
4-3-2 B系列之XRD&Rocking結果 ........................................................ 50
4-3-3 C系列之XRD&Rocking結果 ........................................................ 54
4-4光致螢光(Photoluminescence)結果 ........................................................ 58
4-4-1 A系列之室溫PL結果:.................................................................. 58
4-4-2 B系列之室溫PL結果:.................................................................. 59
4-4-3 C系列之室溫PL結果:.................................................................. 60
4-5電流電壓(I-V)量測結果 ............................................................................... 61
4-5-1 A系列之I-V曲線: ......................................................................... 61
5
4-5-2 B系列之I-V曲線: ......................................................................... 63
4-5-3 C系列之I-V曲線: ......................................................................... 65
4-6電容電壓(C-V)量測結果: .................................................................... 67
4-6-1 A系列之C-V高頻曲線: ............................................................... 67
4-6-2 B系列之C-V高頻曲線: ............................................................... 69
4-6-3 C系列之C-V高頻曲線: ............................................................... 71
第五章、結論.............................................................................................................. 73
[1] B.T. Adekore, “Electrical and optical properties of ZnO (0001 ¯) wafers implanted with argon”,R.F. Davis, J Appl. Phys. 101, 024902(2007).
[2] F. Chaabouni, M. Abaab, B. Rezig, “Characterization of n-ZnO/p-Si films grown by magnetron sputtering”, Superlattices and Microstructures 39 , (2006) 171–178.
[3] M. Depas, R.L. Van Meirhaeghe,” ELECTRICAL CHARACTERISTICS OF Al/SiO,/n-Si TUNNEL DIODES WITH AN OXIDE LAYER GROWN BY RAPID THERMAL OXIDATION”, Solid-State electronic, 37, No. 3, 433-441(1994).
[4] J.B. You, X.W. Zhang, Paul K. Chu,” Electroluminescence behavior of ZnO/Si heterojunctions: Energy band alignment and interfacial microstructure”, J Appl. Phys.107, 083701(2010).
[5] S.T. Tan, X.W. Sun, J.L. Zhao, “Ultraviolet and visible electroluminescence from n-ZnO/SiO x / (n,p)-Si heterostructured light-emitting diodes”, Appl. Phys. Lett. 93, 013506(2008).
[6] J.S. Lian,” Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass”, Applied Surface Science252, 420-424(2005).
[7] W.R. Liu, Y.H. Li, W.F. Hsieh, C.H. Hsu, “Correlation between crystal structure and photoluminescence for epitaxial ZnO on Si (1 1 1) using a γ-Al 2 O 3 buffer layer”, J. Phys. D: Appl. Phys. 41, 065105(2008).
[8] Bixia Lin, Zhuxi Fu, Yunbo Jia, “Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions”, Journal of The Electrochemical Society 148, 110-113 (2001).
[9] Wen-Ching Shih, “Deposition of ZnO thin fi lms on SiO 2 /Si substrate with Al 2 O 3 buffer layer by radio frequency magnetron sputtering for high frequency surface acoustic wave devices, Thin Solid Films 517, 3378-3381(2009)
[10] Bo Huang, “Effects of annealing on the crystal structures and blue emission properties of sputtered ZnO films”, Physica B405, 4101-4104 (2010).
[11] X.M. Wu,” Effects of annealing temperature on the structure and
photoluminescence properties of ZnO films”, Vacuum 81, 899-903(2007).
[12] Yueh Chien Lee, “Rapid thermal annealing effects on the structural and optical properties of ZnO films deposited on Si substrates”, Journal of Luminescence 129 148–152 (2009)
[13] Y.Z. Yoo,” V defects of ZnO thin films grown on Si as an ultraviolet optical path”, T. Sekiguchi, and T. Chikyow, Appl. Phys. Lett. 84 NO.4 (2004)
[14] R.F. Pierret, R.L. Gunshor, and M.E. Cornell, Charge injection in metal-ZnO-Si0 2 -Si structures, J. Appl. Phys 50 NO.12(1979)
[15] X.M. Fan, J.S. Lian , L. Zhao, Y.H. Liu, Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass, Applied Surface Science 252 420–424(2005)
[16] Saeed Esmaili Sardari , Agis A. Iliadis , M. Stamataki , D. Tsamakis , N. Konofaos, Crystal quality and conductivity type of (0 0 2) ZnO films on (1 0 0) Si substrates for device applications, Solid-State Electronics 54 1150–1154(2010)
[17] Yongsheng Sun, Nuo Liu, Xi Zhou, Hong Deng, Hui Gao, Haijun Wu, and Yanrong Li, Investigation of hexagonal microtube ZnO on silicon by capacitance-voltage measurements, American Vacuum Society 0734-2101 2006
[18] Rajesh Kumar , Neeraj Khare , Vijay Kumar , G.L. Bhalla , Effect of intrinsic stress on the optical properties of nanostructured ZnO thin films grown by rf magnetron sputtering, Applied Surface Science 254 6509–6513(2008)
[19] M.L. Cui, X.M. Wu, L.J. Zhuge, Y.D. Meng, Effects of annealing temperature on the structure and photoluminescence properties of ZnO films, Vacuum 81 899–903(2007)
[28] J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, Electroluminescent and transport mechanisms
of n-ZnO/p-Si heterojunctions, Applied Physics Letters 88, 182112 (2006)
[20] Bixia Lin and Zhuxi Fu, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters 79, Number 7(2001)
[21] LEI Huan, LIU Ci-Hui, LIN Bi-Xia, FU Zhu-Xi, Influence of Interface Charge on Electrical Properties of ZnO/Si Heterojunction, CHIN.PHYS.LETT, 22, No. 1 (2005) 185
[22] Jae HyoungChoi, Hitoshi Tabata, Tomoji Kawai, Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition, Journal of Crystal Growth 226 (2001) 493–500
[23] Yao Lv, Lixi Wan, Beijing, Recent Progress of Ohmic Contact on ZnO, 2008 International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP 2008)
[24] DIETER K. SCHRODER. 著, SEMICONDUCTOR MATERIAL AND DEVICE CHARACTERIZATION, WILEY
[25] Petronela Prepelita , R. Medianu , Beatrice Sbarcea , F. Garoi , Mihaela Filipescu, The influence of using different substrates on the structural and optical characteristics of ZnO thin films, Applied Surface Science 256 (2010) 1807–1811
[26] I.-S. Jeong, Jae Hoon Kim, and Seongil Im, Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure, APPLIED PHYSICS LETTERS 83, NUMBER 14
[27] C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller,H. Kalt, ZnO rediscovered—once again!?, Superlattices and Microstructures 38 (2005) 209–222
[28] Wei Gao, Zhengwei Li, ZnO thin films produced by magnetron sputtering, Ceramics International 30 (2004) 1155–1159
[29] 施敏 著,黃調元 譯, 半導體元件物理與製作技術-第二版,交通大學出版社,第3章。
[30] 施敏 著,黃調元 譯, 半導體元件物理與製作技術-第二版,交通大學出版社,第6章。
[31] Albert Paul Malvino,Ph.D. 著,陳虔、劉飛生 譯, 電晶體電路 全集 (Transistor circuit approximations),雲陽出版社,第三章 。
[32] Albert Paul Malvino,Ph.D. 著,陳虔、劉飛生 譯, 電晶體電路 全集 (Transistor circuits approximations),雲陽出版社,第四章。
[33] Dieter K. Schroder, Semiconductor Material And Device Characterization third edition(Wiley, New York,2006), Chap. 2.
[34] Mario Birkholz, Paul F. Fewster, Christoph Genzel, Thin Film Analysis by X-Ray Scattering(Wiley,Weinheim,2006), Chap.5.
[35] Mario Birkholz, Paul F. Fewster, Christoph Genzel, Thin Film Analysis by X-Ray Scattering(Wiley,Weinheim,2006), Chap.6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔