(3.215.183.251) 您好!臺灣時間:2021/04/23 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃建智
研究生(外文):Chien-Chih Huang
論文名稱:黑潮上游超微浮游植物之季節變動
論文名稱(外文):Seasonal dynamics of picophytoplankton population in the upstream Kuroshio
指導教授:李玉玲李玉玲引用關係
指導教授(外文):Yuh-ling Lee Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物科技暨資源學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:124
中文關鍵詞:聚球藻真核超微藻類生長率黑潮流式細胞儀原核綠球藻超微浮游植物
外文關鍵詞:Kuroshioflow cytometrypicoeukaryotesProchlorococcuspicophytoplanktonSynechococcusgrowth rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討黑潮上游海域三類超微浮游植物(Picophytoplankton),包括原核綠球藻(Prochlorococcus)、聚球藻(Synechococcus)及真核超微藻類(picoeukaryotes)生物量之分布,及影響其分布之環境因子。研究期間自2007年7月至2009年5月,共八個航次;採樣地點為台灣東南方之黑潮,包括離岸及近岸測站,緯度在21°55’N,經度在121°00’~122°10’E間。除自然界樣品外,並進行培養實驗,包括遮光實驗、添加硝酸鹽及重金屬培養實驗、溫度控制實驗與捕食實驗,以探討影響三類超微浮游植物生長之因子。所有樣本皆以流式細胞儀(flow cytometry)計數三類超微浮游植物細胞數量。
黑潮所測得之原核綠球藻(0-200 m水柱累計)細胞數,在四季分別為26.63 ± 3.87 (春)、19.07 ± 4.08 (夏)、16.05 ± 2.80 (秋)及17.89 ± 5.41 (冬) ×1012 cells m-2。豐度以春季最高,其他季節之差異不明顯,不同區域間(離岸或近岸)只有在冬季呈顯著差異(p<0.05),細胞數以離岸(17.89 ± 5.41 × 1012 cells m-2)多於近岸(3.19 ± 2.07 × 1012 cells m-2)。與原核綠球藻細胞數顯著相關之環境因子包括水溫、硝酸鹽躍層深度、有光層深度、表水[N+N]及SRP濃度,即水溫越高、硝酸鹽躍層及有光層深度越深、表水[N+N]及SRP濃度越低,呈現原核綠球藻豐度越高。原核綠球藻垂直分布自表水開始即有很高的細胞數(>100×103 cells ml-1),垂直分布上細胞數最大值(200~300 × 103 cells ml-1)出現在75 m以淺,一直到水深超過100 m,仍維持有>25 × 103 cells ml-1,深度超過150 m後細胞數幾近於0。
聚球藻與真核超微藻類水柱累計細胞數在黑潮無明顯季節變化,豐度範圍分別為0.32~1.07 × 1012cells m-2(聚球藻)與0.16~0.24 × 1012 cells m-2(真核超微藻類),在不同區域間(離岸或近岸)也只在冬季有顯著差異(p<0.05),細胞數近岸(聚球藻近岸為2.94 ± 0.32 × 1012 cells m-2,真核超微藻類近岸為0.52 ± 0.05 × 1012 cells m-2)多於離岸;與聚球藻細胞數顯著相關之環境因子包括硝酸鹽躍層深度與表水SRP濃度,即硝酸鹽躍層越淺及表水SRP濃度越高時,聚球藻豐度越多;而與真核超微藻類細胞數顯著相關之環境因子包括水溫、硝酸鹽躍層深度、有光層深度、表水[N+N]及SRP濃度,即水溫越低、硝酸鹽躍層及有光層深度越淺、表水[N+N]及SRP濃度越高,則真核超微藻類豐度越高。垂直分布上,聚球藻細胞數最大值亦在75 m以淺,而可分布的最深深度比原核綠球藻淺,超過水深100 m後,細胞數幾近於0;相對於原核綠球藻與聚球藻,真核超微藻類細胞數最大值通常出現在次表水層,出現深度在水深50 m至125 m之間。所測試之三類超微浮游植物生物量之變動,呈現聚球藻與真核超微藻類間呈正相關,而兩者與原核綠球藻間均呈負相關。就環境因子而言,水溫、硝酸鹽躍層和有光層深度彼此間呈正相關,又與表水N+N、表水SRP濃度呈負相關;而表水N+N及表水SRP濃度彼此間也呈現正相關。
遮光實驗結果顯示,三類超微浮游植物對光照敏感度,以原核綠球藻與真核超微藻類較敏感,聚球藻則對光照有較好的耐受性或可能對光的需求也較大。在硝酸鹽添加實驗中,三類超微浮游植物在添加硝酸鹽後與控制組無明顯差異。而重金屬添加培養實驗,只有在添加EDTA後對三類超微浮游植物生長有明顯促進,添加Fe或Cu的影響則不顯著。溫度控制實驗結果顯示,僅有原核綠球藻明顯受培養溫度(27 °C and 30 °C)之影響,水溫為27 °C比30 °C時有較好的生長。捕食實驗結果則顯示,三類超微浮游植物受捕食效應之影響並不明顯。

Population dynamics of picophytoplanktons, including Prochlorococcus, Synechococcus, and picoeukaryotes, were investigated in the upstream Kuroshio. Data were collected during eight cruises between July 2007 and May 2009. Sampling stations were located along 21°55’N and between 121°00’E and 122°10’E in the Kuroshio off the Southeast Taiwan. Monitoring experiments including light shadding experiment, nutrient enrichment, temperature control, and grazing experiments were conducted to better understand the mechanisms that affect the growths of the picophytoplanktons. The abundances of the picophytoplanktons were measured using a flow cytometry.Water column integrated (0~200 m) abundance of Prochlorococcus was higher (26.63 ± 3.87 × 1012 cells m-2) in spring than either summer (19.07 ± 4.08 × 1012 cells m-2), autumn (16.05 ± 2.80 × 1012 cells m-2), or winter (17.89 ± 5.41 × 1012 cells m-2). During winter, the abundance was significantly (p<0.05) higher at the offshore station (17.89 ± 5.41 × 1012 cells m-2) than the inshore station (3.19 ± 2.07 × 1012 cells m-2). The abundance of Prochlorococcus was positively related to water temperature, nitracline depth (Dni), and euphotic depth (Deu), and negatively to surface concentration of N+N or SRP. Prochlorococcus was abundant (>100 × 103 cells ml-1) in the upper 100-m water column. Its maximum (200~300 × 103 cells ml-1) often occurred at the depth shallower than 75 m. The cell density sustained at >25 × 103 cells ml-1 between 100~150 m and was almost nil at the depth deeper than 150 m.
There was no significant seasonal differences for either the abundances of Synechococcus (0.32~1.07 × 1012 cells m-2) or picoeukaryotes (0.16~0.24 × 1012 cells m-2). During winter, the abundances of Synechococcus was significantly (p<0.05) higher in the offshore Kuroshio water (2.94 ± 0.32 × 1012 cells m-2) than that of the inshore Kuroshio water. Similar trend of offshore (0.52 ± 0.05 × 1012 cells m-2) higher than the inshore was observed for picoeukaryotes in winter. The dynamics of Synechococcus abundance was positively related to surface SRP concentration and negatively to Dni. The picoeukaryotes abundance was positively related to surface N+N concentration, and SRP and negatively to Temp, Dni, and Deu. Vertical distribution of Synechococcus showed that the maximum abundance often occurred above 75 m, but was almost nil below 100 m. By contrast, the maximum abundance for picoeukaryotes often occurred between 50~125 m. The abundance of Synechococcus was positively related to the abundance of picoeukaryotes. And their abundance were negatively related to that of Prochlorococcus. Many environmental factors fluctualed parallelly. Dynamics of surface Temp, Dni and Deu were positively correlated to each other and either of them was negatively correlated to the dynamics of surface concentration of N+N or SRP. Surface N+N was positively correlated with surface SRP.
The result of light shadding experiment showed that Prochlorococcus and picoeukaryotes, compared to Synechococcus, were much sensitive to high intensity of light. This suggest that Synechococcus was more tolerant to high light intensity or required more light energy than Prochlorococcus or picoeukaryotes. The results of nutrient enrichment experiments showed that addition of EDTA significantly enhanced the growth of three groups of picophytoplanktons. However, there was no significant difference after addition of either nitrate, Fe, or Cu. Prochlorococcus grew better at 27 °C than 30 °C in the temperature experiment. But there was no difference in the growth rate between 27 °C and 30 °C for Synechococcus or picoeukaryotes The result of grazing experiment showed that there was no difference between the growth rate with and without grazers in the incubation for any of the three groups of picophytoplanktons.

謝辭i
中文摘要…ii
英文摘要…iv
目錄…vii
圖次…ix
表次…xi
第一章 前言…1
第二章 文獻回顧…3
2.1 黑潮流經臺灣之地理環境與水文…3
2.2 超微浮游植物…4
2.3 流式細胞儀原理…10
第三章 材料方法…13
3.1 海水樣本採集…13
3.2 超微浮游生物細胞豐度計數…14
3.3 培養實驗…15
3.4 營養鹽分析…18
3.5數據分析…19
第四章 結果…20
4.1 水文資料…20
4.2 超微浮游植物生物量…27
4.3 三類超微浮游植物間之比較…40
第五章 討論…42
5.1 細胞密度與其他海域之比較…42
5.2 與硝酸鹽的關係…46
5.3與重金屬之關係…48
5.4 與光照之關係…52
5.5 與溫度之關係…54
5.6 被捕食率…55
5.7 培養實驗生長率改以方法二計算之結果…56
5.8 超微浮游植物的競爭關係…58
參考文獻…61
圖…70
表…97

Agawin, N. S. R., C. M. Duarte, and S. Agusti. 1998. Growth and abundance of Synechococcus sp. in a Mediterranean Bay Seasonality and relationship with temperature. Mar. Ecol. Prog. Ser. 170: 45–53.

–––––, –––––, and –––––. 2000a. Nutrient and temperature control of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591–600.

–––––, –––––, and –––––. 2000b. Response of Mediterranean Synechococcus growth and loss rates to experimental nutrient input. Mar. Ecol. Prog. Ser. 206: 97–106.

Alberte, R. S., A. M. Wood, T. A. Kursar, and R. R. L. Guillard. 1984. Novel phycoerythrins in marine Synechococcus spp. Plant. Physiol. 75: 732–739.

Anderson, D. M., and F. M. M. Morel. 1978. Copper sensitivity of Gonyaulax tamarensis. Limnol. Oceanogr. 23: 283–295.

Banse, K. 1982 Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol. Oceanogr. 27: 1059–1071.

Bertilsson, S., and O. Berglund. 2003. Elemental Composition of Marine Prochlorococcus and Synechococcus: Implications for the Ecological Stoichiometry of the Sea. Limnol. Oceanogr. 48: 1721–1731.

Blanchot, J., J. M. Andre, C. Navarette, J. Neveux, and M. H. Radenac. 2001. Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll conditions. Deep-Sea Res. Part I 48: 297–314.

Bonnet, S., C. Guieu, F. Bruyant, O. Pril, F. Van Wambeke, P. Raimbault, T. Moutin, C. Grob, M. Gorbunov, and J. Zehr. 2008. Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise). Biogeosci. 5: 215-225.

Boyer, G., A. Gillam, and C. Trick. 1987. The Cyanobacteria, 1st ed. Elsevier, Amsterdam.

Buck, K. R., F. P. Chaves, and L. Campbell. 1996. Basin-wide distributions of living carbon components and the inverted trophic pyramid of the central gry of the North Atlantic Ocean, summer 1993. Aquat. Microb. Ecol. 10: 283–298.

Buma, A. G. J., E. Walter Helbling, M. Karin de Boer, and V. E. Villafaņe. 2001. Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation. J. Photochem. Photob. 62: 9–18.
Calvo-Diaz, A., and X. A. G. Moran. 2006. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat. Microb. Ecol. 42: 159–174.

Campbell, L., and D. Vaulot. 1993. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Res. Part I 40: 2043–2060.

–––––,M. R. Landry, J. Constantinou, H. A. Nolla, S. L. Brown, H. Liu, and D. A. Caron. 1998. Response of microbial community structure to environmental forcing in the Arabian Sea. Deep-Sea Res. Part II 45: 2301–2325.

–––––, H. Liu, H. A. Nolla, and D. Vaulot. 1997. Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at Station ALOHA during the 1991-1994 ENSO event. Deep-Sea Res. Part I 44: 167–192.

–––––, H. A. Nolla, and D. Vaulot. 1994. The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol. Oceanogr. 39: 954–961.

Cavender-Bares, K. K., D. M. Karl, and S. W. Chisholm. 2001. Nutrient gradients in the western North Atlantic Ocean: relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep-Sea Res. Part I 48: 2373–2395.

Chen, Y. L. L. 2000. Comparisons of primary productivity and phytoplankton size structure in the marginal regions of southern East China Sea. Cont. Shelf Res. 20: 437–458.

Chen, B., H. Liu, and Z. Wang. 2009. Trophic interactions within the microbial food web in the South China Sea revealed by size-fractionation method. J. Exp. Mar. Biol. Ecol. 368: 59–66.

Christaki, U., S. Jacquet, J. R. Dolan, D. Vaulot, and F. Rassoulzadegan. 1999. Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol. Oceanogr. 44: 52–61.

Church, M. J., B. D. Jenkins, D. M. Karl, and J. P. Zehr. 2005. Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat. Microb. Ecol. 21: 3–14
Davey, M., G. A. Tarran, M. M. Mills, C. Ridame, R. J. Geider, and J. La Roche. 2008. Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnol. Oceanogr. 53: 1722–1733.

DuRand, M. D., R. J. Olson, and S. W. Chisholm. 2001. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep-Sea Res. Part II 48: 1983–2003.

Garside, C. 1982. A chemiluminescent technique for the determination of nanomolar comcentrations nitrate in sea water. Mar. Chem. 11: 159–167.

Goericke, R., and D. J. Repeta. 1992. The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prochlorophyte. Limnol. Oceanogr. 37: 425–433.

Gradinger, R., and J. Lenz. 1989. Picocyanobacteria in the high Arctic. Mar. Ecol. Prog. Ser. 52: 99–101.

Grazoano, L.M., R. J. Geider, W. K. W. Li, and M. Olaozola. 1996. Nitrogen limitation of North Atlantic phytoplankton: analysis of physiological condition in nutrient enrichment experiments. Aquat. Microb. Ecol. 11: 53–64.

Iriarte, A, and D. A. Purdie. 1994. Size distribution of chlorophyll a biomass and primary production in a temperate estuary (Southampton Water): the contribution of photosynthetic picoplankton. Mar. Ecol. Prog. Ser. 115: 283–297.

Joint, I., A. P. Rees, and E. M. S. Woodward. 2001. Primary production and nutrient assimilation in the Iberian upwelling in August 1998. Prog. Oceanogr. 51: 303–320.

Karl, D. M., and T. Georgia. 1992. Magic: A sensitive and precise method for measuring dissolved phosphours in aquatic environments. Limnol. Oceanogr. 37: 105–116.

Katano, T., A. Kaneda, N. Kanzaki, Y. Obayashi, A. Morimoto, G. Onitsuka, H. Yasuda, S. Mizutani, Y. Kon, K. Hata, H. Takeoka, and S. I. Nakano. 2007. Distribution of prokaryotic picophytoplankton from Seto Inland Sea to the Kuroshio region,with special reference to ‘Kyucho’ events. Aquat. Microb. Ecol. 46: 191–201.

Lantoine, F., and J. Neveux. 1997. Spatial and seasonal variations in abundance and spectral characteristics of phycoerythrins in the tropical northeastern Atlantic Ocean. Deep-Sea Res. Part I 44: 223–246.

Liu, H., L. Campbell, M. R. Landry, H. A. Nolla, S. L. Brown, and J. Constantinou. 1998. Prochlorococcus and Synechococcus growth rates and contributions to production in the Arabian Sea during the 1995 Southwest and Northeast Monsoons. Deep-Sea Res. Part II 45: 2327–2352.

–––––, J. Chang, C. M. Tseng, L. S. Wen, and K. K. Liu. 2007. Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station. Deep-Sea Res. Part II 54: 1602–1616.

–––––, M. Dagg, L. Campbell, and J. Urban-Rich. 2004. Picophytoplankton and bacterioplankton in the Missisiippi River plume and its adjacent waters. Estuaries 27: 147–156.

–––––,H. A. Nolla, and –––––. 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12: 39–47.

–––––, K. Suzuki, and H. Saito. 2004. Community structure and dynamics of phytoplankton in the western subarctic Pacific Ocean: a synthesis. J. Oceanogr. 60: 119–137.

Llabres, M., and S. Agusti. 2006. Picophytoplankton cell death induced by UV radiation: Evidence for oceanic Atlantic communities. Limnol. Oceanogr. 51: 21–29.

Lovstad, O., and T. Krogstad. 2001. Effects of EDTA, FeEDTA and soils on the phosphorus bioavailability for diatom and blue-green algal growth in oligotrophic waters studied by transplant biotests. Hydrobiologia. 450: 71–81.

Magazzu, G., and F. Decembrini. 1995. Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: a review. Aquat. Microb. Ecol. 9: 97–104.

Mann, E. L., N. Ahlgren, J. W. Moffett, and S. W. Chisholm. 2002. Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol. Oceanogr. 47: 976–988.
Martin J. H., K. H. Coale, K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. J. Tanner, C. N. Hunter, V. A. Elrod, J. L. Nowicki, T. L. Coley, R. T. Barber, S. Lindley, A. J. Watson, K. Van Scoy, C. S. Law, M. I. Liddicoat, R. Ling, T. Stanton, J. Stockel, C. Collins, A. Anderson, R. Bidigare, M. Ondrusek, M. Latasa, F. J. Millero, K. Lee, W. Yao, J. Z. Zhang, G. Friederich, C. Sakamoto, F. Chaves, K Buck, Z. Kolber, R. Greene, P. Falkoeski, S. W. Chisholm, F. Hoge, R. Swift, J. Yungel, S. Turner, P. Nightingale, A. Hatton, P. Liss, and N. W. Tindale. 1990a. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 123–129.

–––––, R. M. Gordon, and S. E. Fitzwater. 1990b. Iron in Antarctic waters. Nature 345: 156–158.

Moffett, J. W., L. E. Brand, P. L. Croot, and K. A. Barbeau. 1997. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol. Oceanogr. 42: 789–799.

Moore, L. R., and S. W. Chisholm. 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393: 464–467.

–––––, and –––––. 1999. Photophysiology of the marine cyanobacterium Prochlorococcus Ecotypic differences among cultured isolates. Limnol. Oceanogr. 44: 628–638.

–––––, A. F. Post, G. Rocap, and S. W. Chisholm. 2002. Utilization of different nitrogen sources by the marine cyanobacteria, Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47: 989–996.

–––––, G. Rocap, and –––––. 1995. Comparative physiology of Synechococcos and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116: 259–275.

Moran, X. A. G. 2007. Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: a major contribution to carbon fluxes. Aquat. Microb. Ecol. 49: 267–279.

Neale, P. J. 2001. Modeling the effects of ultraviolet radiation on estuarine phytoplankton production: impact of variations in exposure and sensitivity to inhibition. Journal of Photochemistry and Photobiology 62: 1–8.
Olson, R. J., S. W. Chisholm, E. R. Zettler, and E. V. Armbrust. 1990a. Pigments,size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans. Limnol. Oceanogr. 35: 45–58.

–––––, –––––, –––––, M. A. Altabet, and J. A. Dusenberry. 1990b. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep-Sea Res. 37: 1033–1051.

Ong, L. J., A. N. Glazer, and J. B. Waterbury. 1984. An usual phycoerythrin from a marine cyanobacterium. Science 224: 80–82.

Pan, L. A., L. H. Zhang, J. Zhang, J. M. Gasol, and M. Chao. 2005. Onboard flow cytometric observation of picoplankton community structure in the East China Sea during the fall of different years. FEMS Microb. Ecol. 52: 243–253.

Paterson, H. L., B. Knottb, and A. M. Waitea. 2007. Microzooplankton community structure and grazing on phytoplankton, in an eddy pair in the Indian Ocean off Western Australia. Deep-Sea Res. Part II 54: 1076–1093.

Partensky, F., J. Blanchot, and D. Vaulot. 1999a. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Charpy, L., Larkum, A.W.D. (Eds.) Marine Cyanobacteria. Bulletin de l’Institut oceanographique, Monaco, No. 19, pp. 457–475.


–––––, W. R. Hess, and D. Vaulot, 1999b. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microb. Mol. Biol. Rev. 63: 106–127.

Poter, K. G., and Y. S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

Price, N. M., G. I. Harrison, J. G. Hering, R. J. Hudson, P. M. V. Nirel, B. Palenik, and F. M. M. Morel. 1988. Preparation and chemistry of the artificial algal culture medium Aquil. Biol. Oceanogr. 6: 443–461.

Quevedo, M., and R. Anadon. 2001. Protist control of phytoplankton growth in the subtropical north-east Atlantic. Mar. Ecol. Prog. Ser. 221: 29–38.

Rippka, R., T. Coursin, W. Hess, C. Lichtle, D. J. Scanlan, K. A. Palinska, I. Iteman, F. Partensky, J. Houmard, and M. Herdman. 2000. Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC9511, the first axenic chlorophyll a(2)/b(2)-containing cyanobacterium(Oxyphotobacteria). International Journal of Systematic and Evol. Microb. 50: 1833–1847.

Sommaruga, R., J. S. Hofer, L. Alonso-Saez, and J. M. Gasol. 2005. Differential sunlight sensitivity of picophytoplankton from surface Mediterranean coastal waters. Appl. Environ. Microbiol. 71: 2154–2157.

Steinberg, D. K., C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H Knap. 2001. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep-Sea Res. Part II 48: 1405–1447.

Stockner, J. G. 1988. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33: 765–775.

Strickland, J. D., and T. R. Parsons. 1972. Inorganic micronutrients in sea water, p.49–80. In J. C. Steveson, L. W. Billingsley, and R. H. Wigmore [ed], A Pratical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa.

Tang, D., K. W. Warnken, and P. H. Santschi. 2001. Organic complexation of copper in surface waters of Galveston Bay. Limnol. Oceanogr. 46: 321–330.

Timmermans, K. R., W. Stolte, and H. J. W. De Baar. 1994. Iron-mediated effects on nitrate reductase in marine phytoplankton. Mar. Biol. 121: 389–396.

Tsai, A. Y., K. P. Chiang, J. Chang, and G. C. Gong. 2005. Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific cosastal ecosystem. Limnol. Oceanogr. 50: 1221–1231.

Tseng, C. M., G. T. F. Wong, C. R. Wu, and K. K. Liu. 2005. A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophys. Res. Lett. 32: L08608.



Van Mooy, B. A. S., and A. H. Devol. 2008. Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method. Limnol. Oceanogr. 53: 78–88.

–––––, G. Rocap, H. F. Fredricks, C. T. Evans, and A. H. Devol. 2006. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. PNAS 103: 8607–8612.

Vaulot, D., F. Partensky, J. Neveux, R. f. C. Msntoura, and C. A. Llewellyn. 1990. Winter present of prochlorophytes in surface waters of the northwestern Mediterranean Sea. Limnol. Oceanogy. 35: 1156–1164.

Veldhuis, M. J. W., K. R. Timmermans, P. Croot, and B. van der Wagt. 2005. Picophytoplankton; a comparative study of their biochemical composition and photosynthetic properties. J. Sea Res. 53: 7–24.

Wen, L. S., K. T. Jiann, and P. H. Santschi. 2006. Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea. Mar. Chem. 101: 104–129.

Worden, A. Z. 2006. Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat. Microb. Ecol. 43: 165–175.

–––––, and B. J. Binder. 2003. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat Microb. Ecol. 30: 159–174.

–––––, J. K. Nolan, and B. Palenik. 2004. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr. 49: 168–179.

Wu, J. F., S. W. Chung, L.S. Wen, K. K. Liu, Y. L. L. Chen, H. Y. Chen, and D. M. Karl. 2003. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochem. Cycles 17: 1008.

Zubkov, M. V., M. A. Sleigh, and P. H. Burkill. 2000. Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean. Aquat. Microb. Ecol. 21: 13–20.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3.王三郎,有機廢棄物資源回收再利用─生物資源的開發是無限的寶庫(1),生物資源生物技術,第2卷,第2期,2000年。
2. 4.王毓正,論國家環境保護任務之私化,月旦法學雜誌,第104期,2004年1月。
3. 5.古晏菁,中小型廢棄物焚化爐戴奧辛管制及排放標準對產業之衝擊與影響,工業污染防治報導,153期,2000年12月。
4. 6.江舟峰.紀子文,我國四合一資源回收計畫中建立能源回收制度之探討,環境工程會刊,2000年11月。
5. 7.江國瑛.蔡振球.呂秀月,事業廢棄物管制現況檢討與未來展望,永續產業發展雙月刊,第26期,1988年4月。
6. 12.何舜琴.劉怡焜,國內推動事業廢棄物全分類零廢棄之現況與未來,永續產業發展雙月刊,第31期,2007月2月。
7. 13.吳秀東,廢棄物清理機構推行環境管理系統常見問題重點剖析,工業污染防治報導,第150期,2000年9月。
8. 14.吳幸娟.鄭宏德,廢棄物清理法新修條文對產業廢棄物清理現況之影響,工業污染防治報導,第137期,1999年8月。
9. 16.吳南明.張志誠.薛宏欣,我國資源回收法制之演進與評估,環境工程會刊,2000年11月。
10. 17.吳憲彰,廢棄物清理法修正與實務之探討,營造天下,2002年9月。
11. 20.李文欽,從巴賽爾公約發展趨勢談我國因應之道,國際環保通訊,第9期,1995年7月。
12. 21.李永展,資源再生體系及資源再生區之芻議,看守臺灣,第3卷,第2期,2001年。
13. 23.李安然.馮炳勳.陳家榮,臺灣廢輪胎資源回收處理方式之環境衝擊與成本效益與分析,臺灣銀行季刊,第55卷,第3期,2004年9月。
14. 25.李政憲,德國廢棄物資源回收相關法令概況,清潔生產資訊雙月刊,第10期,2007年2月。
15. 26.李繼宇,資源回收再利用相關法規之檢討與建議,臺灣經濟研究月刊,第28卷,第2期,2005年2月。
 
系統版面圖檔 系統版面圖檔