(3.227.208.0) 您好!臺灣時間:2021/04/21 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黎烈妤
研究生(外文):Lieh-Yu Li
論文名稱:非線性頻散波形的逆推及其在海嘯波源逆推之應用
論文名稱(外文):Inversion of Nonlinear Dispersive Wave and its Application in Determining Tsunami Wave Soure
指導教授:陳冠宇陳冠宇引用關係
指導教授(外文):guan-yu chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海下科技暨應用海洋物理研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:97
中文關鍵詞:最小平方QR分解法最小平方法斷層參數線性淺水方程式時空聚焦(聚合)理論變係數KdV方程式
外文關鍵詞:fault parameterslinear shallow water equationsvariable coefficient Korteweg-de Vries (vKdV) equationleast square methodleast square QR-decomposition (LSQR) methodSpatial-temporal Focusing (Coalescence) theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:290
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用時空聚焦(聚合)理論及波形逆推法結合互逆格林函數,提出一個決定海嘯初始水位之方法。海嘯與地震息息相關,現行海嘯數值模式中均依賴斷層參數與半彈性理論計算海嘯初始水位;但實際上,海底斷層參數獲得不易,故海嘯初始水位甚難被準確決定;另一方面,雖經由地震波可以推測斷層參數,但是由於地層是不均勻的介質,因此,利用地震波決定所需之斷層參數仍有相當大之改進空間。對於海嘯模擬而言,若能得知海嘯初始水位,可藉此推估對應之斷層參數。由於海嘯在大洋中之傳遞是一種線性行為,傳遞過程受大洋之地形影響及非線性效應甚微,故滿足線性淺水方程式及可逆性之要求;但在實務中,用來量測水位之潮位站均佈設於近岸,受淺化效應之影響,線性系統之可逆性並無法直接應用於近岸區。因此,本研究整體逆推程序分為兩部份:利用變係數KdV及聚合理論將近岸潮位站之水位資料逆推至水深大於50m以上之線性區,並將逆推結果與模式比對以確認波形逆推之準確性;第二部份根據線性系統之可逆性,使用最小平方法與最小平方QR分解法重現海嘯初始波源,並與模式的海嘯初始波源進行比對均有相當穩合的結果,該結果將有利於斷層參數之決定。
In this study, the method of deciding the water level of the initial tsunami is proposed by using spatial-temporal focusing (Coalescence) theory and waveform inversion reciprocal with Green function. Tsunami and earthquake are so closely bonded that the current tsunami numerical model is dependent on the parameters of the fault and the initial tsunami water level by calculating the theory of
half flexibility. But in fact, it is not easy to have the parameters of seabed fault so that the initial tsunami water level is very hard to get a accurate value. On the other hand, although the parameters of fault can be speculated by seismic waves, because ground is uneven medium, therefore, it is still a lot of improvement to get the parameters of fault by using seismic waves. For the tsunami simulation, if you have the value of the initial tsunami water level, the fault parameters can be estimated.Since the propagation of tsunami in the ocean is a linear behavior, the propagating process is affected by the topography of the ocean and the nonlinear effect
so minimal that it is to satisfy the linear shallow water equations and the requirement of reversibility;However, in fact, the values of the water level measured by the tide stations on the coast are influenced by the shoaling effect so that the reversibility of linear system can not be directly applied to Coastal areas.Therefore, the overall Inversion procedure on this study consists of two parts; the first one is that the usage of variable
coefficient Korteweg-de Vries (vKdV) equation and the Coalescence theory inverses the data gathered by the Coastal tide stations to the water level data where the depth is more than 50m on the linear region, and compares the above results with the stimulation and confirms the accuracy of the inversed waveform;The second one is that according to the reversibility of the linear system the use of least squares and least squares QR- decomposition (LSQR) method reproduce the initial tsunami wave source that compares with the initial tsunami wave source by stimulating and has a very good conformity. The seismic parameters can be easily decided by the above results.
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文線回顧 2
1.4 研究方法 4
1.5 本文內容 5
第二章 相關理論簡介及說明 6
2.1 海嘯與地震之關係 6
2.2 傳統海嘯波源驅動模式及海嘯初始水位 9
2.3 海嘯數值模式與互逆格林函數 13
2.3.1海嘯數值模式 13
2.3.2 互逆格林函數 15
2.4 海嘯於近岸之傳遞行為與KdV方程式 17
2.4.1 淺水方程的數值模型 17
2.4.2 孤立波與KdV方程式 18
2.5 變係數KdV方程式與聚合理論 24
2.5.1 變係數KdV方程式 24
2.5.2 聚合理論 27
2.5.3 數值方法 29
2.6 逆推法與最小平方法 30
2.7 最小平方QR分解法 31
第三章 非線性頻散波形逆推之數值試驗 33
3.1 聚合理論逆推程序 33
3.2 聚合理論逆推波形試驗 34
3.2.1 模擬平坦底床之孤立波 35
3.2.2 模擬平坦底床之N形波 36
3.2.3模擬先平底後斜坡底床之孤立波 36
3.2.4 模擬先平底後斜坡底床之N形波 37
3.3 座標轉換試驗與其驗證 37
3.3.1 以平坦底床之餘弦波驗證座標轉換 38
3.3.2 以真實底床之餘弦波驗證座標轉換 39
3.3.3 以平坦底床之孤立波驗證座標轉換 39
3.3.4 以真實底床之孤立波驗證座標轉換 40
3.4 小結 41
第四章 利用海嘯模式進行逆推驗證 51
4.1 南亞海嘯簡介 51
4.2 斷層參數及地形設定 52
4.3 參數設定與演算流程 53
4.3.1 Arugam站 54
4.3.2 Goadu站 55
4.4 利用海嘯逆推法進行逆推模擬 55
4.5 海嘯波源逆推結果 61
第五章 結論與建議 72
5.1 結論 72
5.2 建議 73
參考書目 75
[1]陳冠宇、蘇青和、曾相茂,《瘋狗浪的可能機制與特性》,第 23 屆海洋工程研討會,140 頁 -146 頁,2001。
[2]郭一羽主編,《海岸工程學》,文山書局發行,2001。
[3]陳陽益,《波浪理論上課講義》。
[4]陳冠宇,《瘋狗浪的可能機制》,海洋工程學刊,第 2 卷,第 1 期,第 93-106 頁,2002。
[5]劉超,《超聲層析成像的理論與實現》,浙江大學博士學位論文,2003
[6]陳冠宇,《聚合作用在淺水非對稱波形之應用》,第 27 屆海洋工程研討會論文,2005。
[7]邱永芳、王慶福、富田孝史,《海嘯發生與傳播特性之研究》,港灣報導,72 期,第 13-22,2005。
[8]馬國鳳,《從南亞海嘯談起》,科學發展 1 月 第 397 期,2006。
[9]陳冠宇,《淺談海嘯及其數值模擬》,港灣報導,第 77 期,10-17,2007。
[10]陳韻如,《屏東外海地震引發海嘯的數值模擬探討》,國立中央大學水文科學研究所碩士論文,2007。
[11]陳冠宇、劉俊志,《以互逆格林函數快速預報高雄港外海嘯高度》,第 30 屆海洋工程研討會論文集,2008。
[12]黃惠絹,《馬尼拉海溝地震引發海嘯的潛勢分析》,國立中央大學水文科學研究所碩士論文,2008。
[13]何東政,《海嘯逆推方法之研究及其於 2006 年屏東地震之應用》,國立中央大學水文與海洋科學研究所碩士論文,2009。
[14]Leon,《線性代數~(第八版)》,滄海出版社發行,2010。
[15]林柏佑,《利用單位海嘯模擬方法建立台灣近海海嘯警報系統 》,國立中央大學地球物理研究所碩士論文,2009。
[16]黎烈妤、陳冠宇、姚建中,《非線性頻散過程在淺水形成突浪的機制》,第 31 屆海洋工程研討會論文,2009。
[17]Alejandro Sanchez,Kwok Fai Cheung, ``Tsunami forecast using an adaptive inverse algorithm for the Peru-Chile source region,'' Geophysical Research Letters, Vol. 34, L13605, (2007).
[18]Fornberg, B., ``A Practical Guide to Pseudospectral Methods Cambridge University Press,'' New York., (1996).
[19]Boyd, P.,``Chebyshev and Fourier Spectral Methods,'' Dover, New York., (1998).
[20]Boyd, P., emph{Chebyshev and Fourier spectral methods},Mineola, N.Y. : Dover Publications, (2001).
[21]Chen, Guan-Yu and Boyd, J. P., ``Analytical and Numerical Studies of Weakly Nonlocal Solitary Waves of the Rotation-Modified Korteweg-deVries Equation,'' Physica D, V155, 201-222, (2001).
[22]Chen, Guan-Yu and Liu,Chin-Chu, ``Evaluating the Location of Tsunami Sensors: Methodology and Application to the Northeast Coast of Taiwan,'' Terr. Atmos. Ocean. Sci., 20(4), 563-571, doi: 10.3319/TAO. 2008.08.04.01(T)., (2009).
[23]Carrier,G. F.,``Tsunami run-up and draw-down on a plane beach,''J. Fluid Mech., vol. 475, 79-99,(2003).
[24]Grimshaw, R., ``Internal solitary waves In Environmental Stratified Flows,'' Kluwer, Boston, Chapter 1: 1-28, (2001).
[25]Grimshaw, R., ``Internal solitary waves in a variable medium. Gesellschaft fur Angewandte Mathematik,'' 30, 96-109, (2007).
[26]Grimshaw, R., ``Solitary waves propagating over variable topography Tsunami and Nonlinear Waves,'' Springer, ed. A. Kundu, 49-62, (2007).
[27]Golub G. H. and Kahan W., “Calculating the Singular Values and Pseudoinverse of a Matrix”, SIAM J. Numer. Anal. Vol. 2, 205-224, (1965).
[28]Golub G. H. and Charles F. Van Loan, “Matrix computations”, The Johns Hopkins University Press, Baltimore, Maryland, (1983).
[29]Hammack, J. L. and Segur, H.,“The Korteweg-deVries equation and water waves. part 2. comparison with experiments,” Journal of Fluid Mechanics, Vol. 65, 289-314, (1974).
[30]Hanks, T.C. and H. Kanamori (1979), “A moment-magnitude scale,” J. Geophys. Res., 84, pp.2348-2350.
[31]Loomis, H.G., ``Tsunami prediction using the reciprocal property of Green''s functions,'' Mar. Geod., 2(1), 27-39, (1979).
[32]Li, Y. and Raichlen, F., “Non-breaking and breaking solitary wave run-up,” Journal of Fluid Mechanics, Vol. 456, 295-318, (2002).
[33]Liu, P.L.-F., Synolakis, C. E. and Yeh, H. H.“Report on the international workshop on long-wave run-up.” J. Fluid Mech., 229, 675-688 (1991).
[34]Liu, P.L.-F., Woo, S.-B., and Cho, Y.-S., ``Computer programs for tsunami propagation and inundation.,'' Cornell University, (1998).
[35]Liu, Y., S. Angela, M. W. Shuo, S. Yaolin, L. Hailing and A. Y. David, ``Tsunami hazards along Chinese coast from potential earthquakes in South China Sea,'' Physics of the Earth and Planetary Interiors, 163, 233-244, (2007).
[36]Lee, Shiann-Jong, Wen-Tzong Liang, Bor-Shouh Huang, ``Source Mechanisms and Rupture Processes of the 26 December 2006 Pingtung Earthquake Doublet as Determined from the Regional Seismic Records,'' Terr. Atmos. Ocean. Sci., Vol. 19, No. 6, 555-565, (2008).
[37]Mansinha, L. and Smylie, D. E., “The displacement fields of inclined faults,” Bulletin of the Seismological Society of America, 61(5), 1433-1440, (1971).
[38]Nouri, F. Z. and Sloan, D. M., ``A comparison of Fourier pseudospectral methods for the solution of the Korteweg-deVries equation,'' Journal of Computational Physics, Vol. 55, 203-230, (1989).
[39]Nickerson, J. W., ``Freak waves,'' Marine Weather Log, 14-19, (1993).
[40]Paige, C.C. and Saunders M. A., “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares”, ACM Transactions on Mathematical Software, Vol. 8, No. 1, 43-72, (1982).
[41]Paige, C.C. and Saunders M. A., “Algorithm 583 LSQR: Sparse Linear Equations and Least Squares Problems”, ACM Transactions on Mathematical Software, Vol. 8, No. 2, 195-209, (1982).
[42]Pelinovsky, E., Talipova, T. and Kharif, C., ``Nonlinear-dispersive mechanism of the freak wave formation in shallow water,'' Physica D, Vol. 147, pp.83-94, (2000).
[43]Satake Kenji, ``Inversion of Tsunami Waveforms for the Estimation of Heterogeneous Fault Motion of Large Submarine Earthquakes:The 1968 Tokachi-oki and 1983 Japan Sea Earthquakes,'' Journal Of Geophysical Research, Vol. 94, No.B5, Pages 5627-5636, (1989).
[44]Shuto N., ``Numerical Simulation of Tsunamis-Its Present and Near Future,'' Natural Hazards 4, 171-191., (1991).
[45]Synolakis, C. E., “The runup of solitary waves,” Journal of Fluid Mechanics, Vol. 185, 523-545 (1987).
[46]Thurman, H. V.emph{Essentials of Oceanography},4th ed.,(1993)
[47]Tadepalli, S. and Synolakis, C. E.“The run-up of N-waves on sloping beaches.” Proc. Royal soc. London, 445, 99-112 (1994).
[48]Tadepalli, S. and Synolakis, C. E. “Model for the leading waves of tsunamis.” Physica Rev. Let., 77(10), 2141-2144 (1996).
[49]Wells, Donald L. and Coppersmith Kevin J., “New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement,” Bulletin of the Seismological Society of America, Vol.44, No.4, pp.974-1002, (1994).
[50]Wang, X. and Liu, P. L.-F., “An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami”. Journal of Hydraulic research, 44 (2), 147-154, (2006).
[51]Xu, Z., ``The All-source Green''s Function and its Applications to Tsunami,'' Science of Tsunami Hazards, 26(1), 59-69., (2007).
[52]Zabusky, N. J. and Galvin, C. J.,“Shallow water waves, the Korteweg-deVries equation and solitons,” Journal of Fluid Mechanics, Vol. 47, 811-824, (1971).
[53] ITIC(International Tsunami Information Centre) download from : http://www.drgeorgepc.com/TsunamiGlossary.pdf

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔