[1]陳冠宇、蘇青和、曾相茂,《瘋狗浪的可能機制與特性》,第 23 屆海洋工程研討會,140 頁 -146 頁,2001。
[2]郭一羽主編,《海岸工程學》,文山書局發行,2001。
[3]陳陽益,《波浪理論上課講義》。
[4]陳冠宇,《瘋狗浪的可能機制》,海洋工程學刊,第 2 卷,第 1 期,第 93-106 頁,2002。
[5]劉超,《超聲層析成像的理論與實現》,浙江大學博士學位論文,2003
[6]陳冠宇,《聚合作用在淺水非對稱波形之應用》,第 27 屆海洋工程研討會論文,2005。
[7]邱永芳、王慶福、富田孝史,《海嘯發生與傳播特性之研究》,港灣報導,72 期,第 13-22,2005。[8]馬國鳳,《從南亞海嘯談起》,科學發展 1 月 第 397 期,2006。
[9]陳冠宇,《淺談海嘯及其數值模擬》,港灣報導,第 77 期,10-17,2007。[10]陳韻如,《屏東外海地震引發海嘯的數值模擬探討》,國立中央大學水文科學研究所碩士論文,2007。[11]陳冠宇、劉俊志,《以互逆格林函數快速預報高雄港外海嘯高度》,第 30 屆海洋工程研討會論文集,2008。
[12]黃惠絹,《馬尼拉海溝地震引發海嘯的潛勢分析》,國立中央大學水文科學研究所碩士論文,2008。[13]何東政,《海嘯逆推方法之研究及其於 2006 年屏東地震之應用》,國立中央大學水文與海洋科學研究所碩士論文,2009。[14]Leon,《線性代數~(第八版)》,滄海出版社發行,2010。
[15]林柏佑,《利用單位海嘯模擬方法建立台灣近海海嘯警報系統 》,國立中央大學地球物理研究所碩士論文,2009。[16]黎烈妤、陳冠宇、姚建中,《非線性頻散過程在淺水形成突浪的機制》,第 31 屆海洋工程研討會論文,2009。
[17]Alejandro Sanchez,Kwok Fai Cheung, ``Tsunami forecast using an adaptive inverse algorithm for the Peru-Chile source region,'' Geophysical Research Letters, Vol. 34, L13605, (2007).
[18]Fornberg, B., ``A Practical Guide to Pseudospectral Methods Cambridge University Press,'' New York., (1996).
[19]Boyd, P.,``Chebyshev and Fourier Spectral Methods,'' Dover, New York., (1998).
[20]Boyd, P., emph{Chebyshev and Fourier spectral methods},Mineola, N.Y. : Dover Publications, (2001).
[21]Chen, Guan-Yu and Boyd, J. P., ``Analytical and Numerical Studies of Weakly Nonlocal Solitary Waves of the Rotation-Modified Korteweg-deVries Equation,'' Physica D, V155, 201-222, (2001).
[22]Chen, Guan-Yu and Liu,Chin-Chu, ``Evaluating the Location of Tsunami Sensors: Methodology and Application to the Northeast Coast of Taiwan,'' Terr. Atmos. Ocean. Sci., 20(4), 563-571, doi: 10.3319/TAO. 2008.08.04.01(T)., (2009).
[23]Carrier,G. F.,``Tsunami run-up and draw-down on a plane beach,''J. Fluid Mech., vol. 475, 79-99,(2003).
[24]Grimshaw, R., ``Internal solitary waves In Environmental Stratified Flows,'' Kluwer, Boston, Chapter 1: 1-28, (2001).
[25]Grimshaw, R., ``Internal solitary waves in a variable medium. Gesellschaft fur Angewandte Mathematik,'' 30, 96-109, (2007).
[26]Grimshaw, R., ``Solitary waves propagating over variable topography Tsunami and Nonlinear Waves,'' Springer, ed. A. Kundu, 49-62, (2007).
[27]Golub G. H. and Kahan W., “Calculating the Singular Values and Pseudoinverse of a Matrix”, SIAM J. Numer. Anal. Vol. 2, 205-224, (1965).
[28]Golub G. H. and Charles F. Van Loan, “Matrix computations”, The Johns Hopkins University Press, Baltimore, Maryland, (1983).
[29]Hammack, J. L. and Segur, H.,“The Korteweg-deVries equation and water waves. part 2. comparison with experiments,” Journal of Fluid Mechanics, Vol. 65, 289-314, (1974).
[30]Hanks, T.C. and H. Kanamori (1979), “A moment-magnitude scale,” J. Geophys. Res., 84, pp.2348-2350.
[31]Loomis, H.G., ``Tsunami prediction using the reciprocal property of Green''s functions,'' Mar. Geod., 2(1), 27-39, (1979).
[32]Li, Y. and Raichlen, F., “Non-breaking and breaking solitary wave run-up,” Journal of Fluid Mechanics, Vol. 456, 295-318, (2002).
[33]Liu, P.L.-F., Synolakis, C. E. and Yeh, H. H.“Report on the international workshop on long-wave run-up.” J. Fluid Mech., 229, 675-688 (1991).
[34]Liu, P.L.-F., Woo, S.-B., and Cho, Y.-S., ``Computer programs for tsunami propagation and inundation.,'' Cornell University, (1998).
[35]Liu, Y., S. Angela, M. W. Shuo, S. Yaolin, L. Hailing and A. Y. David, ``Tsunami hazards along Chinese coast from potential earthquakes in South China Sea,'' Physics of the Earth and Planetary Interiors, 163, 233-244, (2007).
[36]Lee, Shiann-Jong, Wen-Tzong Liang, Bor-Shouh Huang, ``Source Mechanisms and Rupture Processes of the 26 December 2006 Pingtung Earthquake Doublet as Determined from the Regional Seismic Records,'' Terr. Atmos. Ocean. Sci., Vol. 19, No. 6, 555-565, (2008).
[37]Mansinha, L. and Smylie, D. E., “The displacement fields of inclined faults,” Bulletin of the Seismological Society of America, 61(5), 1433-1440, (1971).
[38]Nouri, F. Z. and Sloan, D. M., ``A comparison of Fourier pseudospectral methods for the solution of the Korteweg-deVries equation,'' Journal of Computational Physics, Vol. 55, 203-230, (1989).
[39]Nickerson, J. W., ``Freak waves,'' Marine Weather Log, 14-19, (1993).
[40]Paige, C.C. and Saunders M. A., “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares”, ACM Transactions on Mathematical Software, Vol. 8, No. 1, 43-72, (1982).
[41]Paige, C.C. and Saunders M. A., “Algorithm 583 LSQR: Sparse Linear Equations and Least Squares Problems”, ACM Transactions on Mathematical Software, Vol. 8, No. 2, 195-209, (1982).
[42]Pelinovsky, E., Talipova, T. and Kharif, C., ``Nonlinear-dispersive mechanism of the freak wave formation in shallow water,'' Physica D, Vol. 147, pp.83-94, (2000).
[43]Satake Kenji, ``Inversion of Tsunami Waveforms for the Estimation of Heterogeneous Fault Motion of Large Submarine Earthquakes:The 1968 Tokachi-oki and 1983 Japan Sea Earthquakes,'' Journal Of Geophysical Research, Vol. 94, No.B5, Pages 5627-5636, (1989).
[44]Shuto N., ``Numerical Simulation of Tsunamis-Its Present and Near Future,'' Natural Hazards 4, 171-191., (1991).
[45]Synolakis, C. E., “The runup of solitary waves,” Journal of Fluid Mechanics, Vol. 185, 523-545 (1987).
[46]Thurman, H. V.emph{Essentials of Oceanography},4th ed.,(1993)
[47]Tadepalli, S. and Synolakis, C. E.“The run-up of N-waves on sloping beaches.” Proc. Royal soc. London, 445, 99-112 (1994).
[48]Tadepalli, S. and Synolakis, C. E. “Model for the leading waves of tsunamis.” Physica Rev. Let., 77(10), 2141-2144 (1996).
[49]Wells, Donald L. and Coppersmith Kevin J., “New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement,” Bulletin of the Seismological Society of America, Vol.44, No.4, pp.974-1002, (1994).
[50]Wang, X. and Liu, P. L.-F., “An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami”. Journal of Hydraulic research, 44 (2), 147-154, (2006).
[51]Xu, Z., ``The All-source Green''s Function and its Applications to Tsunami,'' Science of Tsunami Hazards, 26(1), 59-69., (2007).
[52]Zabusky, N. J. and Galvin, C. J.,“Shallow water waves, the Korteweg-deVries equation and solitons,” Journal of Fluid Mechanics, Vol. 47, 811-824, (1971).
[53] ITIC(International Tsunami Information Centre) download from : http://www.drgeorgepc.com/TsunamiGlossary.pdf