(3.236.82.241) 您好!臺灣時間:2021/04/13 03:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭明宏
研究生(外文):Ming-hung Cheng
論文名稱:實驗及數值方法探討孤立內波在擬大陸斜坡平台的演化
論文名稱(外文):Laboratory and Numerical Study on Evolution of Interfacial Solitary Wave across Pseudo Slope-Shelf
指導教授:許榮中許榮中引用關係
指導教授(外文):John Rong Chung Hsu
學位類別:博士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:321
中文關鍵詞:梯形障礙物流場變化數值模擬水槽試驗孤立內波波形翻轉
外文關鍵詞:waveform inversionflow fieldslope-shelflaboratory experimentsnumerical modelInterfacial solitary wave
相關次數:
  • 被引用被引用:4
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當深海一孤立內波於大陸邊緣傳遞至近岸,根據以往理論與現場文獻提及波形會由下沈型翻轉至上舉型。由兩層水體理論提出一轉折點概念,即上下層水深相等處。然受理論假設限制,鮮少探究傳遞過程中波形翻轉過程,而現場觀測受限經費不易同時獲取大範圍時空資料,故本研究將透過一連續水槽實驗與數值模式,來討論下沈型孤立內波於簡化梯形障礙物傳遞之演化。
本研究於國立中山大學內波實驗室水槽(長寬高 12*0.5 *0.7 公尺)進行相關試驗。實驗水體先放置淡水層(溫度27℃;密度996 kg/m3 ),再藉由水槽底部注入鹽水(溫度27℃;密度1030 kg/m3 ),佈置出近兩層水體。藉由重力塌陷產生出所需波形。在本研究採用四種控制因子,分別為水體特性(密躍層特徵厚度與上下層水深比)與梯形障礙物型態(前坡角與平台長度)。會採用此四種因子,由不同密躍層特徵厚度瞭解實驗室孤立內波生成與傳遞變化,改變上下層水深比討論對波形翻轉衍生影響;不同前坡角分析反射率與波形翻轉之關係;不同障礙物後平台長短對於翻轉後之波形傳遞影響。
實驗結果發現上下層水深比是引發波形翻轉最重要因子,只有由深水(上層小於下層)傳遞至平台上(上層大於下層),超音波計所量測波形才有明顯翻轉。而密躍層特徵厚度主要影響生成孤立內波波形;當前坡角大於60°,因反射率增大導致平台上波形翻轉現象不明顯;短平台會導致似上舉型波形再次碎波,傳遞至後方能量更少。
除藉由超音波計所量得波形外,為瞭解波形翻轉時流場變化,採用數值模式模擬孤立內波於梯形障礙物傳遞。數值結果可見,波形翻轉亦造成渦動改變。換言之,原主渦動於斜坡面作用強度大幅減少,而部分能量傳入後方次要渦動中使其至平台上強度稍增。
While shoaling from deepwater in a stratified ocean, an interfacial solitary wave (ISW) may experience waveform inversion on a continental margin. Although many oceanographers have believed that the inversion from depression to elevation may commence at the turning point where the upper and bottom layers are equal in depth, this phenomenon has not been fully verified in field observations nor in a laboratory. In this study, a series of laboratory experiments and numerical modeling were conducted on the evolution of an ISW of depression across uniform slope joining a horizontal plateau which resembles pseudo slope-shelf topography, in order to clarify this fascinating phenomenon and the variations of wave properties associated with the process.
In the laboratory experiments, a depression ISW was produced by a collapse mechanism in a stratified two-layer fluid system within a steel-framed wave flume (12 m long, 0.7 m high by 0.5 m wide) at the National Sun Yat-sen University in Taiwan. The fluid density in the upper (fresh) and bottom (brine) layers was 996 and 1030 kg/m3, respectively. A series of experiments were conducted upon varying the magnitude of the most important physical factors (i.e., nominal thickness of pycnocline, depth ratio between upper and bottom layer, front gradient and shape of pseudo slope-shelf), from which the results are now discussed in four separate chapters in this thesis.
Present laboratory results indicate that the process of waveform inversion took place after an ISW had experienced internal run-down, hydraulic jump, vortex motion and surge-up on the front slope, prior to its propagation onto the plateau. Moreover, the fundamental wave period of leading wave on the plateau was significantly smaller than that in the preceding sections on the front slope and the incident stage earlier, thus representing frequency downshift. Amongst the factors involved, the depth ratio between the upper and bottom layer was the most significant one for waveform inversion. Only when the upper layer was thicker than the bottom layer on the plateau of pseudo slope-shelf, waveform inversion could occur, besides the length of the plateau. On the other hand, the front gradient and shape of pseudo slope-shelf also affected the magnitude of the transmitted wave over the plateau as the wave across this specific topography. In the case of a steeper front gradient, waveform inversion became insignificant due to stronger wave reflection and intense energy dissipation caused by turbulent mixing while a depression ISW propagated over a slope-shelf; particularly against a submerged vertical cliff. As a depression ISW across pseudo slope-shelf with short plateau, intense wave breaking might occur again with vortex motion at its rear end as the newly inversed waveform reentering deep water. In this region, the upper layer was smaller than the bottom layer, hence it could not support the continuous existence of an ISW in elevation. Again, energy dissipation occurred due to turbulent mixing beyond the rear end of a short plateau. Finally, a different mode of ISW appeared within pycnocline, while its nominal thickness was larger than the amplitude of the incident wave.
In addition to the laboratory investigations, numerical model was also adopted to study the variations in the flow field as an ISW propagated over a pseudo slope-shelf, in order to complement the experimental results. The results of numerical modeling revealed that the horizontal velocity in the bottom layer increased when the wave encountered the front slope, even if the depth of upper layer was thinner than that of the bottom layer on the plateau. Consequently, the velocity in the upper layer became less than that in the bottom layer when the former was thicker than that of the latter on the plateau. On the other hand, the vertical velocity within the self-generated vortex switched direction as waveform inversion commenced after the wave across the shoulder of pseudo slope-shelf where the local depth of the upper layer was larger than that of bottom part.
Overall, the significance of the four pertinent factors (i.e., nominal thickness of pycnocline, water depth ratio, front slope, and plateau length) that affected a depression ISW across pseudo slope-shelf is discussed in detail in this thesis, as well as the variation of flow field calculated by the numerical mode presented.
謝誌………………………………………………………………………………….i
Abstract……………………………………………………………………………ii
Chinese Abstract…………………………………………………………..…. iv
Contents…………………………………………………………………..………v
List of Figures………………………………………………………………….ix
List of Tables………………………………………………………………….xx
Nomenclature Used………………………………………………..……..xxi
Chapter 1 Introduction………………………………………………………….1
1.1 Background ………………………………………………………………….1
1.2 Literature Review……………………………………………………………..3
1.2.1 Field Observation………………………………………………………….4
1.2.2 Theoretical Analysis……………………………………………………….5
1.2.3 Laboratory Experiments………………………………………………….9
1.2.4 Numerical Modeling……………………………………………………..10
1.3 Motivation…………………………………………………………………….13
1.4 Organization of Chapters…………………………………………………..15
Chapter 2 Experimental Design……………………………………………...17
2.1 Experimental Apparatus…………………………………………………….17
2.1.1 Wave Flume…..……………………..………..……………………….…..17
2.1.2 Preparation of a Two-Layer Fluid System.………………………………..19
2.1.3 Wave Generation…………………………..……………………………...20
2.1.4 Recording Instruments……….………………………..………..………...21
2.1.4.1 Ultrasonic probes……….………………………..….…..………...21
2.1.4.2 Surface probes……….………………………..….…..……………...23
2.1.4.3 Digital video……….………………………..….…..……………...24
2.2 Physical Conditions…………….………………………..….…..………….24
2.2.1 Waveform Inversion……………..….…..………..……………………….25
2.2.1.1 Effect of nominal pycnocline thickness…….…..………..………..25
2.2.1.2 Effect of water depth ratio…………………..………………..…26
2.2.1.3 Effect of front slope……………..….…..………..………………29
2.2.1.4 Effect of plateau length……………..….……..……………….…30
2.2.3 Velocity Field of an ISW across Flat Bottom………....………..……….33
2.3 Data Processing and Analysis…….…..…………...…..…………………..…35
2.3.1 Data Processing…………..……………………..…..….…..………..........35
2.3.2 Introduction of Hilbert Transform..………..…………………………....36
Chapter 3 Effect of Nominal Pycnocline Thickness on Waveform Inversion……..………………………….................................................................41
3.1 Introduction……………………..….…..……………..…………….............42
3.2 Evolution of a Depression ISW with Broaden Pycnocline……………..…..45
3.2.1 Evolution of a Depression ISW on Flat Bottom…………………………..45
3.2.2 Evolution of a Depression ISW over Trapezoidal Obstacle………………48
3.3 Discussions on Experimental Results……………..…. ……………………49
3.3.1 Definition of Nominal Pycnocline Thickness………………….……51
3.3.2 Effect of Continuous Wave Making on Variations in Pycnocline………...53
3.3.3 Effect of Pycnocline Thickness on Variations in wave Amplitude.............60
3.3.3.1 Initial and subsequent wave amplitude on flat bottom……………...60
3.3.3.2 Transmitted wave amplitude on trapezoidal obstacle………………...63
3.3.4 Effect of Varying Pycnocline Thickness on Potential Energy………….....63
3.4 Conclusions…………..……………………………………………………..65
Chapter 4 Effect of Depth Ratio on Waveform Inversion…………….67
4.1 Introduction……………………..….…..……………..…………….............69
4.2 Numerical Model………………………………………….. ……………….73
4.3 Evolution of a Depression ISW over Trapezoidal Obstacle……………77
4.3.1 Group 1 – hs1 < hs2…………………………………….…………………77
4.3.2 Group 2 – hs1 = hs2………………………………………….…………80
4.3.3 Group 3 – hs1 > hs2……………………………………..…….…………83
4.3.3.1 Incident wave with moderate amplitude…….…………………….83
4.3.3.2 Incident wave with large amplitude…………………………….…..85
4.4 Comparison on Results……………………………………………………..89
4.4.1 Dimensionless Parameters………………………………………………89
4.4.2 Waveform Instability……………………………………………………92
4.4.3 Amplitude Ratio of Crest to Trough…………………………….…….…94
4.4.4 Characteristic Wavelength Ratios………………….…………………….100
4.4.5 Variation in Mean Wave Speed………………………………………….103
4.4.6 Transmitted Potential Wave Energy…………………………………..…104
4.5 Conclusions……………………………………………………………..…106
Chapter 5 Effect of Front Slope on Waveform inversion…………….113
5.1 Introduction……………………..….…..……………..…………….............114
5.2 ISW of Depression across Trapezoidal Obstacle………………………119
5.2.1 Waveform Evolution on Mild Slope of 13 Degrees……………………..119
5.2.2 Waveform Evolution on Steep Slope of 45 and 60 Degrees…………….122
5.2.3 Waveform Evolution against a Vertical Front Slope…………………….123
5.2.4 Comparison on Experimental Results with Different Front Slopes……..125
5.3 Discussion on Experimental Results………………………………………132
5.3.1 Variation in Wave Amplitude with Front Slope…………………….…...134
5.3.2 Variation in Crest and Trough Height………………………………..….135
5.3.3 Variation in Characteristic Period..………………………………....137
5.3.4 Variation in Transmitted Wave Energy………………………..…………145
5.4 Analysis of Digital Video Imagery………………………………………..151
5.5 Conclusions…………………………………………………………….….153
Chapter 6 Effect of Plateau Length on Waveform Inversion….…….157
6.1 Introduction……………………..….…..……………..…………….............158
6.2 Evolution of a Depression ISW over Trapezoidal Obstacle…………….161
6.2.1 Process of Wave from Evolution on the Front Slope………………….161
6.2.2 Waveform Evolution across Long or Short Plateau……………………164
6.2.3 Wave Evolution beyond the Rear end of Short Plateau………………...169
6.3 Results and Discussions……………………………………………………173
6.3.1 Waveform Inversion…………………………………………………..…175
6.3.2 Variation in Crest and Trough Height……………………………….…..178
6.3.3 Variation in Characteristic Wavelength……………………….…………180
6.3.4 Variation in Transmitted Phase Speed…………………………………..183
6.3.5 Variation in Transmitted Wave Energy…………………………………184
6.4 Comparison on Flow Field among Different Obstacle Shapes………….188
6.5 Conclusions………………………………………………………………….195
Chapter 7 Flow Field of an ISW Evolution on Flat Bottom…………199
7.1 Introduction……………………..….…..……………..…………….............199
7.2 Results of Laboratory Experiments…………………………………….….201
7.2.1 Orbital Paths for a Depression ISW on Flat Bottom……………………201
7.2.2 Orbital Paths for an Elevation ISW on Flat Bottom……………………208
7.2.3 Velocity Field of Different Bead Sizes……..……………………………213
7.3 Results of Theoretical Flow Field…………..................................................215
7.3.1 Governing Equations……………............................................................215
7.3.2 Theoretical Results of Flow Field…........................................................220
7.3.3 Theoretical Results using other Expression........................................223
7.4 Conclusions……….........................................................................................228
Chapter 8 Flow Field of an ISW Evolution over Slope-Shelf…..……231
8.1 Introduction……………………..….…..……………..…………….............231
8.2 Theoretical Calculation with Laboratory Results………………………..233
8.2.1 Practical Consideration…………….………………………..……..….233
8.2.2 Results of Theoretical Calculations.……………………………………..235
8.2.2.1 Group 1: hs1 < hs2 …………....……………………………………235
8.2.2.2 Group 3: hs1 > hs2 …………....…………………………………....240
8.3 4 Numerical Modeling………………………………………………...........244
8.3.1 Governing Equations…………………………………………….............244
8.3.2 Results of Numerical Modeling………………………………………....245
8.3.2.1 Group 1: hs1 < hs2 …………....……………………………………246
8.3.2.2 Group 3: hs1 > hs2 …………....…………………………………....252
8.4 Conclusions……….........................................................................................257
Chapter 9 Conclusions………..………………………….....….…………….263
References………..………………………….....….……………………………..269
Appendix 1 List of Original Data
Ariyaratnam, J., (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. 121 pp.
Aguilar, D.A., B.R. Sutherland and D.J. Muraki, (2006). Laboratory generation of internal waves from sinusoidal topography. Deep Sea Research, PART II, 53(1-2): 96-115.
Amick, C.J. and R.E.L. Turner, (1986). A global theory of internal solitary waves in two-fluid system. Trans. Amer. Math. Soc., 298: 431-484.
Azevedo, A., J.C.B. da Silva and A.L. New, (2006). On the generation and propagation of internal solitary waves in the southern Bay of Biscay. Deep Sea Research Part I, 53: 927-941.
Boegman, L., G.N. Ivey and J. Imberger, (2005). The degeneration of internal waves in lakes with sloping topography. Limnology and Oceanography, 50(5): 1620-1637.
Boegman, L. and G.N. Ivey, (2009). Flow separation and resuspension beneath shoaling nonlinear internal waves. Journal of Geophysical Research, 114, C02018, doi:10.1029/2007JC004411.
Bogucki, D.J., L.G. Redekopp and J. Barth, (2005). Internal solitary waves in the Coastal Mixing and Optics 1996 experiment: Multimodal structures and resuspension. Journal of Geophysical Research, 110, C02024, doi:10.1029/2003JC002253.
Bole, J.B., J.J. Ebbesmeyer and R.D. Romea, (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas, pp. 367-375.3.
Boussinesq, J. (1871). Theorie de l’itumescence liquide appelee onde solitarie ou de translation, sepropageant dans un canal rectangulaire. Comptes Rendus Hebdomadaires des Séance de lAcademie des Sciences, 72: 755-759.
Boyd, J.P. and G.Y. Chen, (2001). Weakly nonlinear wave packets in the Korteweg-deVries equation: The KdV/NLS connection. Mathematics and Computers in Simulation, 55(4-6): 317-327.
Brandt, P., A. Rubino, A. Alpers and W. Backhaus, (1997). Internal waves in the Strait of Messina studied by a numerical model and synthetic aperture radar images from ERS 1/2 satellites. J. Phys. Oceanogr., 27: 648-663.
Burnside, W., (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Sec., (1) xx: 392-397.
Chambarel, J., C. Kharif and J. Touboul, (2009). Head-on collision of two solitary waves and residual falling jet formation. Nonlin. Processes Geophys., 16: 111-122.
Chang, M.H., R.C. Lien, T.Y. Tang, Y.J. Yang and J. Wang, (2008). A composite view of surface signatures and interior properties of nonlinear internal waves: Observations and applications. Journal of Atmospheric and Oceanic Technology, 25: 1218-1227.
Chao, S.Y., P.T. Shaw, M.K. Hsu and Y.J. Yang, (2006). Reflection and diffraction of internal solitary waves by a circular island. J. Oceanogr., 62: 811-823.
Chao, S.Y., D.S. Ko, R.C. Lien and P.T. Shaw, (2007). Assessing the west ridge of Luzon Strait as an internal wave mediator. J. Oceanogr., 63: 897-911.
Chen, C.Y. and J.R.C. Hsu, (2005). Interaction between internal waves and a permeable seabed. Oceanic Eng., 32 (5-6): 587-621.
Chen, C.Y., (2006). Laboratory experiments on internal wave evolution on uniform slopes and topographic sills. Ph.D. dissertation, National Sun Yat-Sen University, Taiwan. 335 pp.
Chen, C.Y., (2007). An experimental study of stratified mixing caused by internal solitary waves in a two layered fluid system over variable seabed topography. Ocean Engineering, 34 (14-15): 1995-2007.
Chen, C.Y., J.R.C. Hsu, M.H. Cheng, H.H. Chen and C.H. Kuo, (2007). An investigation on internal solitary waves in a two-layer fluid: propagation and reflection from steep slopes. Ocean Engineering, 34: 171-184.
Chen, C.Y., J.R.C. Hsu and M.H. Cheng, (2008). Experiments on mixing and dissipation in internal solitary waves over variable ridges. Environmental Fluid Mechanics, 8:199-214.
Chen, Y. and L-F. Liu, (1995). The unified Kadomtsev–Petviashvili equation for interfacial waves. J. Fluid Mech., 288: 383–407.
Cheng, M.H., J.R.C. Hsu, C.Y. Chen and C.W. Chen, (2009). Modelling the propagation of an internal solitary wave across double ridges and a slope-shelf. Environmental Fluid Mechanics, 9: 321-340.
Cheng, M.H. and J.R.C. Hsu, (2010). Laboratory experiments on depression interfacial solitary waves over a trapezoidal obstacle with horizontal plateau. Ocean Engineering, 37(8-9): 800-817.
Cole, K.L. and S.F. DiMarco, (2010). Low-frequency variability of currents in the deepwater eastern Gulf of Mexico. OCS Study MMS 2010-015. 136 pp.
Corredor, J.E., (2008). Development and propagation of internal waves in the Mona Passage. Sea Technology, 49(10): 48-50.
Dalzeiel, S.B., M. Carr, J.K. Sveen and P.A. Davies, (2007). Simultaneous synthetic schlieren and PIV measurements for internal solitary waves. Meas. Sci. Technol., 18: 533-547
Davies, M. and J.X. Xing, (2004). Modelling processes influencing wind-induced internal wave generation and propagation. Continental Shelf Research, 24: 2245-2271.
Davis, R.E. and A. Acrivos, (1967). Solitary internal waves in deep water. J. Fluid Mech., 29: 593-607.
Diebels, S., B. Schuster and K. Hutter, (1994). Nonlinear internal waves over variable topography. Geophys. Astrophys. Fluid Dyn., 76: 165-192.
Djordjevic, V.D. and L.G. Redekopp, (1978). The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Oceanogr., 8(6): 1016-1024.
Drazin, P.G. and R.S. Johnson, (1989). Solitons: an introduction, Cambridge University Press. 240pp.
Duda, T.F., J.F. Lynch, A.E. Newhall, L. Wu and C.-S. Chu, (2004). Fluctuations of 400 Hz sound intensity in the 2001 ASIAEX South China Sea experiment. IEEE J. Oceanic Eng., 29 (4): 1264–1278.
Ekman, V.M., (1904). On dead-water. Sci. Results, Norwegian North Polar Expedition, 5(15): 1893-1896.
Filonov, A.E. and A. Trasvina, (2000). Internal waves on the continental shelf of the Gulf of Tehuantepec, Mexico. Estuarine, Coastal and Shelf Science, 50: 531-547.
Gill, A.E., (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press, 662 pp.
Grimshaw, R., E. Pelinovsky, T. Talipova and A. Kurkin, (2004). Simulation of the transformation of internal solitary wave on oceanic shelves. J Phys Oceanogr., 34: 2774-2791.
Grue, J., A. Jensen, P.O. Rusas and E. Palm, (1997). A method for computing unsteady fully nonlinear interfacial waves. J. Fluid Mech., 351: 223-252.
Grue, J., A. Jensen, P.O. Rusas and J.K. Sveen, (1999). Properties of large amplitude internal waves. J. Fluid Mech., 380: 257-277.
Grue, J., A. Jensen, P.O. Rusas and J.K. Sveen, (2000). Breaking and broadening of internal solitary waves. J. Fluid Mech., 413: 181-217.
Harleman, D.R.F., (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, 26.1 - 26.21.
Helfrich, K.R., W.K. Melville and J.W. Miles, (1984). On interfacial solitary waves over slowly carrying topography. J. Fluid Mech., 149: 305-317.
Helfrich, K.R. and W.K. Melville, (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-307.
Helfrich, K.R., (1992). Internal solitary wave breaking and run up on a uniform slope. J. Fluid Mech., 243: 133-154.
Helfrich, K.R. and W.K. Melville, (2006). Long nonlinear internal waves. Annual Review Fluid Mechanics, 38: 395-425.
Holyer, J.Y., (1979). Large amplitude progressive interfacial waves, J. Fluid Mech., 93: 433-447.
Hsu, J.R.C. and J. Ariyaratnam, (2000). Pressure fluctuations and a mechanism for sediment suspension in swash zone. Proc. 27th Inter. Conf. on Coastal Eng., ASCE, vol. 1, p. 610-623.
Hsu, M.K. and A.K. Liu, (2000). Nonlinear internal waves in the South China Sea. Canadian Journal of Remote Sensing, 26: 72-81.
Huang, N.E., Z. Shen, S.R. Long, W.L. Wu and H.H. Shih, (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings, Royal Society London, Ser. A, 454: 903-995.
Hwung, H.H., R.Y. Yang and I.V. Shugan, (2009). Exposure of internal waves on the sea surface Source. J. Fluid Mech., 626: 1-20.
Ivey, G.N. and R.I. Nokes, (1989). Vertical mixing due to the breaking of critical internal waves in sloping boundaries. J. Fluid Mech., 204: 479-500.
Javam, A., J. Imberger and S.W. Armfield, (2000). Numerical study of internal wave-wave interactions in a stratified fluid. J. Fluid Mech., 415: 65-87.
Jo, T.C. and W.Y. Choi, (2008). On stabilizing the strongly nonlinear internal wave model. Studies in Applied Mathematics, 120(1): 65-85.
Joseph, R.I., (1977). Solitary waves in a finite depth fluid. J. Phys. A: Math. Gen., 10: 225-227.
Kao, T.W., F.S. Pan and D. Renouard, (1985). Internal solitons on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech., 159: 19-53.
Keulegan, G.H., (1953). Characteristics of internal solitary waves. J Res Nat Bur Standards., 51: 133-140.
Klinck, J.M., (1996). Circulation near submarine canyons: A modeling study. J. Geophys. Res., 101: 1211-1223.
Klymak, J.M. and J.N. Moum, (2003). Internal solitary waves of elevation advancing on a shoaling shelf. Geophys. Res. Lett., 30: 2045. doi: 10.1029/2003GL017706.
Knickerbocker, C.J. and A.C. Newell, (1980). Internal solitary wave near a turning point. Physical Letters, 75A(5): 326-330.
Koop, C.G. and G. Butler, (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251.
Korteweg, D.J. and G. De Vries, (1895). On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philosophical Magazine, 39(5): 422-443.
Krauss, W., (1981). The erosion of the pycnocline. Journal of Physical Oceanography 11: 415–433.
Lamb, H. (1932). Hydrodynamics. 6th ed. NY: Dover Publications, Republished in 1945.
Lamb, K.G., (2000). Conjugate flows for a three-layer fluid. Phys. Fluids, 12: 2169–2185.
Lamb, K. G., (2002). A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J. Fluid Mech., 451: 109-144.
Lamb, K.G. and V.T. Nguyen, (2009). Calculating energy flux in internal solitary waves with an application to reflectance. Journal of Physical Oceanography, 39: 559-580. DOI:10.1175/2008JPO3882.1
Lee, K.J., H.H. Hwung, R.Y. Yang and I.V. Shugan, (2007). Stokes waves modulation by internal waves. Geophysical Research Letters, 34(23): L23605.
Legg, S. and A. Adcroft, (2003). Internal wave breaking at concave and convex continental slopes. Journal of Physical Oceanography, 33: 2224-2246.
Love, A.E.H., (1891). Wave-motion in a heterogeneous heavy liquid. Proc. London Math. Soc., 22: 307-316.
Lynett, P.J. and L.-F. Liu, (2002). A two-dimensional, depth-integrated model for internal wave propagation over variable bathymetry. Wave Motion, 36: 221-240
Maas, L.R.M. and J.J.M. van Haren, (1987). Observations on the vertical structure of tidal and inertial currents in the central North Sea. Journal of Marine Research, 45: 293-317.
Maurer, J., K. Hutter and S. Diebels, (1996). Viscous effects in internal waves of a two-layered fluid with variable depth. European Journal of Mechanics. B, Fluids, 15(N4): 445-470,.
Maxworthy, T., (1979). A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. Journal of Geophysical Research, 84: 338-346.
Maxworthy, T., (1980). On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J. Fluid Mech., 96: 47-64
Meiron, D.I. and P.G. Saffman, (1983). Overhanging interfacial gravity waves of large amplitude. J. Fluid Mech., 129: 213-217.
Michallet, H. and E. Barthelemy, (1997). Ultrasonic probes and data processing to study interfacial solitary waves. Exp. Fluid., 22: 380-386.
Michallet, H. and E. Barthelemy, (1998). Experimental study of large interfacial solitary waves. J. Fluid Mech., 366: 159-177.
Michallet, H. and G.N. Ivey, (1999). Experiments on mixing due to internal solitary waves breaking on uniform slopes. Journal of Geophysical Research, 104 (C6): 13467-13477.
Miropol’sky, Y.Z., (2001). Dynamics of internal gravity waves in the ocean. Kluwer Academic. Izv. AN SSSR, Fizika atmosferyi okcana, 11(5):491-502
Moore, S.E. and R.C. Lien, (2007). Pilot whales follow internal solitary waves in the South China Sea. Marine Mammal Science, 23 (1): 193-196.
Motohiko, U., (2008). PIV Techniques for Velocity Fields of Internal Waves over a Slowly Varying Bottom Topography. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 134(6): 286-297.
Moum, J.N., D.M. Farmer, W.D. Smyth, L. Armi and S. Vagle, (2003). Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. Journal of Physical Oceanography, 33: 2093-2112.
Nagashima, H., (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6.
Nansen, F., (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition, 3(9): 1893-1896.
Oladosu, G., (2010). Identifying the oil price-macroeconomy relationship: Anempiricalmode decomposition analysis of US data. Energy Policy, 37: 5417-5426.
Osborne, A.R. and T.L. Burch, (1980). Internal solitions in the Andaman Sea. Science, 208: 445-458.
Orr, M.H. and P.C. Migneret, (2003). Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves. J Geophys Res, 108(C3): 3064.
Ortega, J. and G.H. Smithb, (2009). Hilbert-Huang transform analysis of storm waves. Applied Ocean Research, 31: 212-218.
Pere’man, T.L., A.Kh. Fridman and M.M., Elyashevich, (1974). Modified Korteweg-de Vries equation in electro-hydrodynamics. Sov. Phys. JETP, Engl. Transl., 66(4): 1316-1321.
Pierini, S., (1989). A model for the Alboran Sea internal solitary waves. J. Phys. Oceanography, 19: 755-772.
Ramp, S.R., T.Y. Tang, T.F. Duda, J.F. Lynch, A.K. Liu, C.S. Chiu, F.L. Bahr, H.R. Kim and Y.J. Yang, (2004). Internal solitons in the northeastern south China Sea. Part 1: sources and deep water propagation. IEEE J. Oceanic. Eng., 29(4): 1157-1181.
Ramp, S., (2006). Private communication.
Rayleigh, Lord., (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., 14: 170-177.
Reeder, D.B., T.F. Duda and B. Ma, (2008). Short-range acoustic propagation variability on a shelf area with strong nonlinear internal waves. Ocean 2008 - MTS/IEEE Kobe Techno-Ocean, Vols 1-3, pp 65-172.
Rickard, G., J. O’Callaghan and S. Popinet, (2009). Numerical simulations of internal solitary waves interacting with uniform slopes using an adaptive model. Ocean Modelling, 30: 16-27.
Segur, H. and J.L. Hammack, (1982). Soliton models of long internal waves. J. Fluid Mech., 118: 285-304.
Small, R.J. and R.P. Hornby. (2005). A comparison of weakly and fully non-linear models of the shoaling of a solitary internal wave. Ocean Modelling, 8: 395–416.
Stastna, M. and K. G. Lamb. (2008). Sediment resuspension mechanisms associated with internal waves in coastal waters. Journal of Geophysical Research, 113, C10016, doi:10.1029/2007JC004711.
Stamp, A.P. and M. Jacka, (1995). Deep-water internal solitary waves. J. Fluid Mech. 305: 347-371.
Stevick, P.T., L.S. Incze, S.D. Kraus, S. Rosen, N. Wolff and A. Baukus, (2008) Trophic relationships and oceanography on and around a small offshore bank. Marine Ecology Progress Series, 363: 15-27.
Stokes, G.G., (1847). On the theory of oscillatory waves. Trans. Cambridge Phil. Soc., 8: 441- 455.
Sveen, J.K., Y. Guo, P.A. Davies and J. Grue, (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-187.
Thorpe, S.A., (1973). Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech., 61: 731-752.
Thorpe, S.A., (1978). On the shape and breaking of finite amplitude internal gravity waves in a shear flow. J. Fluid Mech., 85: 7-31.
Thorpe, S.A., (1999). Fronts formed by obliquely reflecting internal waves at a sloping boundary. Journal of Physical Oceanography, 29: 2462-2467.
Tomasson, G.G. and W.K. Melville, (1992). Geostrophic adjustment in a channel: nonlinear and dispersive effects. J. Fluid Mech., 241: 23-57.
Troy, C.D. and J.R. Koseff, (2005). The generation and quantitative visualization of breaking internal waves. Experiments in Fluid, 38: 549-562.
Turner, J.S. and E.B. Kraus, (1967). A one-dimensional model of the seasonal thermocline. I. A laboratory experiment and its interpretation, Tellus, 19: 88-97.
Turner, R.E.L. and J.M. Vanden-Broeck, (1988). Broadening on interfacial solitary waves. Phys. Fluids, 31: 2486-2490.
Umeyama, M. and T. Shintani, (2004). Visualization analysis of runup and mixing of internal waves on an upper slope. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 130: 89-97.
Umeyama, M. and T. Shintani, (2006). Transformation, attenuation, setup, and undertow of internal waves on a gentle slope. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 132(6): 477-486.
Van Haren, H., (1996). Correcting false thermistor string data. Continental Shelf Research, 16: 1871-1883.
Van Haren, H., L. Maas, J.T.F. Zimmerman, H. Ridderinkhof and H. Malschaert, (1999). Strong inertial currents and marginal internal wave stability in the central North Sea. Geophysical Research Letters, 26: 2993-2996.
van Haren, H., (2000). Properties of vertical current shear across stratification in the North Sea. Journal of Marine Research, 58: 465-491.
Van Haren, H. and M.J. Howarth (2004). Enhanced stability during reduction of stratification in the North Sea. Continental Shelf Research, 24(7-8): 805-818.
Vazquez, A., M. Bruno, A. Izquierdo, D. Macias and A. Ruizcanavate, (2008). Meteorologically forced subinertial flows and internal wave generation at the main sill of the Strait of Gibraltar. Deep-Sea Research Part I – Oceanographic Research Papers, 55 (10): 1277-1283.
Vlasenko, V.I. and K. Hutter, (2001). Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Processes in Geophysics, 8: 223-238.
Vlasenko, V. and K. Hutter, (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanography, 32(6): 1779-1793.
Vlasenko, V., L. Ostrovsky and K. Hutter, (2005). Adiabatic behavior of strong nonlinear internal solitary waves in slope-shelf areas. Journal of Geophysical Research, 110(C4): C04006.
Vlasenko, V. J., C.S. Garrido, N. Stashchuk, J.G. Lafuente and M. Losada, (2009). Three-dimensional evolution of large amplitude internal wave in the Strait of Gibraltar. J. Physical Oceanography., 39(9): 2230-2246.
Walker, L.R., (1973). Interfacial solitary waves in a two fluid medium. Phys. Fluids, 16: 1796-1815.
Walker, S.A., A.J. Martin, W.J. Easson and A.B. Evans, (2003). Comparison of laboratory and theoretical internal solitary wave kinematics. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 129(5): 210-217.
Wallace, B.C. and D.L. Wilkinson, (1988). Run-up of internal waves on a gentle slope in a two-layered system. J. Fluid Mech., 191: 419-442.
Wang, Y.H., C.F. Dai and Y.Y. Chen, (2007). The physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophysical Research Letters, 34: L18609, doi:10.1029/2007GL030657.
Warn-Varnas A., J. Hawkins, K.G. Lamb, S. Piacsek, S. Chin-Bing, D. King and G. Burgoes, (2010). Solitary wave generation dynamics at Luzon Strait. Ocean Modelling, 31: 9-27.
Wessels, F. and K. Hutter, (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanography, 26 (1): 5-20.
Yang, Y.J., T.Y. Tang, M.H. Chang, A.K. Liu, M.K. Hsu and S.R. Ramp, (2004). Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE J. Oceanic. Eng., 29(4): 1182-1198.
Yang, Y.J., Y.C. Fang, M.H. Chang, S.R. Ramp, C.C. Kao and T.Y. Tang, (2009). Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. Journal of Geophysical Research, 114, C10003, doi:10 1029/2009JC005317.
Zabusky, N.J. and M.S. Kruskal, (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15: 240-243.
Zhao, Z., V. Klemas, Q. Zheng and X.H. Yan, (2004a). Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophysical Research Letters, 31, doi:10.1029/2003GL019077.
Zhao, Z.X., V. Klemas, Q.N. Zheng, X.F. Li and X.H. Yan, (2004b). Estimating parameters of a two-layer stratified ocean from polarity conversion of internal solitary waves observed in satellite SAR images. Remote Sensing of Environment, 92 (2): 276-287.
Zhao, Z. and M.H. Alford, (2006). Source and propagation of internal solitary waves in the Northeastern South China Sea. Journal of Geophysical Research, 111, C11012. doi:10.1029/2006JC003644.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔