跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗甫
研究生(外文):Chung-fu Lin
論文名稱:以模糊樣式簡化為基礎之高效能向量編碼器
論文名稱(外文):A High-Performance Vector Quantizer Based on Fuzzy Pattern Reduction
指導教授:江明朝
指導教授(外文):Ming-Chao Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:52
中文關鍵詞:模糊樣式簡化編碼簿製成向量定量啟發式演算法
外文關鍵詞:metaheuristicscodebook generationvector quantizationfuzzy pattern reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來許多學者在向量定量這個領域對於如何解決編碼簿製成問題以及減少啓發式
演算法的計算時間越來越感興趣。其中有一個方法主要是基於樣式簡化的方式減少啓發式演算法的計算時間。但是樣式簡化的問題在於它可能會壓縮或移除掉不應該被壓縮或移除的樣式,因此而導致結果不好。在本篇論文中,我們提出一種樣式簡化的模糊版本,稱模糊樣式簡化,它可以正確的找出應該被壓縮或移除的樣式。為了評估我們提出的方法,在本篇實驗中,我們將四種啓發式演算法:generalized Lloyd algorithm、code displacement、genetic k-means algorithm、particle swarm optimization,進行計算時間與結果的比較。最後,實驗結果發現我們提出的方法不僅可以有效的減少計算時間而且也改善了四種啓發式演算法的結果。
Recent years have witnessed increasing interest in using metaheuristics to solve the codebook generation problem (CGP) of vector quantization as well as increasing interest in reducing the computation time of metaheuristics. One of the recently proposed methods aimed at reducing the computation time of metaheuristics is based on the notion of pattern reduction (PR). The problem with PR is in that it may compress and remove patterns that are not supposed to be compressed and removed, thus decreasing the quality of the solution. In this thesis, we proposed a fuzzy version of PR called fuzzy pattern reduction (FPR) to reduce the possibility of compressing and removing patterns that are not supposed to be compressed and removed. To evaluate the performance of the proposed algorithm, we apply it to the following four metaheuristics: generalized Lloyd algorithm, code displacement, genetic k-means algorithm, and particle swarm optimization and use them to solve the CGP. Our experimental results show that the proposed algorithm can not only significantly reduce the computation time but also improve the quality of all the metaheuristics evaluated.
Contents
論文審定書i
Acknowledgments iii
摘要iv
Abstract v
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Chapter 2 Related Works 3
2.1 Vector Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Genetic K-means Algorithm . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Code Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Pattern Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 3 The Proposed Algorithm 15
3.1 The Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Fuzzy Pattern Reduction enhanced Particle Swarm Optimization . . . . . . . . 17
3.3.1 Detection by Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Fuzzy Inference Detection for pattern reduction . . . . . . . . . . . . . 20
Chapter 4 Experimental Results 23
4.1 Environment, Datasets and Parameter Settings . . . . . . . . . . . . . . . . . . 23
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chapter 5 Conclusion 31
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Bibliography 32
Appendix A Figure Sets of Quality Chart 34
A.1 Data Set: Lena image (512 Χ 512, 256 Χ 256, 128 Χ 128) . . . . . . . . . . . . 34
A.2 Data Set: Baboon image (512 Χ 512, 256 Χ 256, 128 Χ 128) . . . . . . . . . . 35
A.3 Data Set: Peppers image (512 Χ 512, 256 Χ 256, 128 Χ 128) . . . . . . . . . . 35
Appendix B Figure Sets of Time Chart 37
B.1 Data Set: Lena image (512 Χ 512, 256 Χ 256, 128 Χ 128) . . . . . . . . . . . . 37
B.2 Data Set: Baboon image (512 Χ 512, 256 Χ 256, 128 Χ 128) . . . . . . . . . . 38
B.3 Data Set: Peppers image (512 Χ 512, 256 Χ 256, 128 Χ 128) . . . . . . . . . . 38
Bibliography
[1] C.-W. Tsai, C.-Y. Lee, M.-C. Chiang, and C.-S. Yang, “A fast VQ codebook generation algorithm via pattern reduction,” Pattern Recognition Letters, vol. 30, no. 7, pp. 653–660, 2009.
[2] T. K. Abdel-Galil, Y. G. Hegazy, M. M. A. Salama, and R.Bartnikas, “Fast match-based vector quantization partial discharge pulse pattern recognition,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 1, pp. 3–9, 2005.
[3] A. Laha, N. R. Pal, and B. Chanda, “Design of vector quantizer for image compression using self-organizing feature map and surface fitting,” IEEE Transactions on Image Processing, vol. 13, no. 10, pp. 1291–1303, 2004.
[4] M. Barszcz, W. Chen, G. Boulianne, and P. Kenny, “Tree-structured vector quantization for speech recognition,” Computer Speech and Language, vol. 14, no. 3, pp. 227–239, 2000.
[5] E. Trentin and M. Gori, “Face recognition using vector quantization histogram method,” in Proceedings of the 2002 International Conference on Image Processing, 2002, pp. 22–25.
[6] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Transactions on Communications, vol. 28, no. 1, pp. 84–95, 1980.
[7] J. H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
[8] P. Fr‥anti, “Genetic Algorithm with Deterministic Crossover for Vector Quantization,” Pattern Recognition Letters, vol. 21, no. 1, pp. 61–68, 2000.
[9] K. Krishna, K. R. Ramakrishnan, and M. A. L. Thathachar, “Vector Quantization using Genetic K-Means Algorithm for Image Compression,” International Conference on Information, Communications and Signal Processing, vol. 3, pp. 1585–1587, September 1997.
[10] K. Krishna and M. N. Murty, “Genetic K-Means Algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 29, no. 3, pp. 433–439, 1999.
[11] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” vol. 4, 1995, pp. 1942–1948.
[12] C.-Y. Chen and F. Ye, “Particle Swarm Optimization Algorithm and Its Application to Clustering Analysis,” Prceedings of the 2004 IEEE Interational Conference on Networking, Sensing & Control, pp. 789–794, March 2004.
[13] Q. Chen, J. Yang, and J. Gou, “Image Compression Method Using Improved PSO Vector Quantization,” International Conference on Natural Computation, pp. 490–495, 2005.
[14] T. Kaukoranta, P. Fr‥anti, and O. Nevalainen, “A Fast Exact GLA Based on Code Vector Activity Detection,” IEEE Transactions on Image Processing, vol. 9, no. 8, pp. 1337–1342, 2000.
[15] J. Z. Lai, Y.-C. Liaw, and J. Liu, “A fast VQ codebook generation algorithm using codeword displacement,” Pattern Recognition, vol. 41, no. 1, pp. 315–319, 2008.
[16] C.-W. Tsai, C.-S. Yang, and M.-C. Chiang, “A Time Efficient Pattern Reduction Algorithm for k-means Based Clustering,” IEEE International Conference on Systems, Man and Cybernetics, pp. 504–509, 2007.
[17] “Image datasets, http://www.inf.uni-konstanz.de/cgip/lehre/dip_w0910/demos.html.”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top