跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/04 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張惟舜
研究生(外文):Wei-Shun Chang
論文名稱:基於人類行為分析之視訊監視預警系統
論文名稱(外文):A Video Surveillance Alarm System based on Human Behavior Analysis
指導教授:蔣依吾蔣依吾引用關係
指導教授(外文):Yi-Wu Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:52
中文關鍵詞:影像處理行為分析深度攝影機電腦視覺智慧型監控系統
外文關鍵詞:image processingintelligent surveillance systemcomputer visionbehavior analysisdepth camera
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:1
人物行為分析在許多領域都是重要挑戰,諸如監視系統、視訊搜索、人類互動系統、醫學診斷……等。隨著公共安全需求日益增加,智慧型監控系統成為目前電腦視覺相關研究領域中非常活躍之課題。本論文提出了利用深度攝影機所拍攝之具有深度資訊之影像序列分析人物行為之方法,即時對環境進行監控,並且在偵測到異常行為時即時發出警訊。我們使用等高線與三角化之方式建立人物之姿勢模型,從三角化後之三角網格,依其深度建立其帶有深度資訊之生成樹,此一生成樹建構出人物姿勢之模型。影像序列依照姿勢模型整合成姿勢之叢簇,再進一步歸納為姿勢序列,便能與資料庫中之姿勢序列加以比對。若符合異常行為之姿勢序列,則發出警訊在第一時間通知使用者。實驗結果顯示本系統在辨識人類行為具有精準度與可靠度。
Human behavior analysis is an important challenge in many domains, such as surveillance systems, video content retrieval, human interactive systems, medical diagnosis, etc. With the increasing needs of public safety, intelligent surveillance system becomes an activating issue in computer vision and related research fields. In this thesis we present a method to analyze human behavior in a video sequence with depth information obtained from the depth camera. When interested actions are detected in the scene, the system will trigger alarm information. Contour line and Delaunay triangulation are used to establish human posture model. By traversing the triangulation meshes with the depth first search, we obtain the spanning tree with the depth information, and then construct human posture model with this spanning tree. Posture sequence from video sequence with corresponding posture models can be obtained, and then the posture sequences is clustered into key posture sequence. By querying the key posture sequence, the system can recognize human behavior in real-time and inform users immediately when interested actions detected. Experimental results show that the system is accurate and robust for human behavior recognition.
中文摘要 ....................................................................................................................... ii
英文摘要 ...................................................................................................................... iii
目錄 .............................................................................................................................. iv
圖目錄 .......................................................................................................................... vi
表目錄 ......................................................................................................................... vii
符號說明 .................................................................................................................... viii
第一章、導論 ............................................................................................................... 1
1.1. 研究背景 ........................................................................................................................... 1
1.2. 研究動機 ........................................................................................................................... 3
1.3. 論文架構 ........................................................................................................................... 4
第二章、文獻探討 ....................................................................................................... 5
第三章、理論簡介 ....................................................................................................... 6
3.1. 背景評估與前景物件 ....................................................................................................... 6
3.2. 連通物件標記 ................................................................................................................... 9
3.3. 卡爾曼濾波器 ................................................................................................................. 10
3.4. 前處理 ............................................................................................................................. 13
3.4.1. 輪廓追蹤 .................................................................................................................. 13
3.4.2. 高曲率輪廓點取樣 .................................................................................................. 14
3.5. 三角化 ............................................................................................................................. 17
第四章、研究方法 ..................................................................................................... 20
4.1. 以深度圖進行二維姿勢分類 ......................................................................................... 23 v

4.1.1. 深度圖與背景評估 .................................................................................................. 23
4.1.2. 從深度圖取得等高線 .............................................................................................. 24
4.1.3. 骨架姿勢模型判定 .................................................................................................. 27
4.2. 行為分析 ......................................................................................................................... 29
4.2.1. 姿勢分類 .................................................................................................................. 29
4.2.2. 行為判定 .................................................................................................................. 31
第五章、實驗結果 ..................................................................................................... 34
第六章、結論 ............................................................................................................. 37
參考文獻 ..................................................................................................................... 38
[1] T. B. Moeslund and E. Granum, “A survey of computer vision-based human motion capture,” Comput. Vis. Image Understand., vol. 81, no. 3, pp. 231–268, Mar. 2001.
[2] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani, “Probabilities posture classification for human-behavior analysis,” IEEE Trans. Syst., Man, Cybern. A, vol. 35, no. 1, pp. 42–54, Jan. 2005.
[3] S. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-time surveillance of people and their activities,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 809–830, 2000.
[4] S. Maybank and T. Tan, “Introduction to special section on visual surveillance,” Int. J. Comput. Vis., vol. 37, no. 2, pp. 173–173, 2000.
[5] I. Mikic, M. M. Trivedi, E. Hunter, P. C. Cosman, “Human body model acquisition and tracking using voxel data,” Int. J. Comput. Vis., vol. 53, no. 3, pp. 199–223, 2003.
[6] N. Werghi, “A discriminative 3D wavelet-based descriptors: Application to the recognition of human body postures,” Pattern Recognit. Lett., vol. 26, no. 5, pp. 663–677, 2005.
[7] I. C. Chang and C. L. Huang, “The model-based human body motion analysis,” Image Vis. Comput., vol. 18, no. 14, pp. 1067–1083, 2000.
[8] H. Fujiyoshi, A. J. Lipton, and T. Kanade, “Real-time human motion analysis by image skeletonization,” IEICE Trans. Inform. Syst., vol. E87-D, no. 1, pp. 113–120, Jan. 2004.
[9] N. Oliver, B. Rosario, and A. Pentland, “A Bayesian computer vision system for modeling human interactions,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22,
39
no. 8, pp. 831–843, Aug. 2000.
[10] R. Rosales and S. Sclaroff, “3D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions,” in Proc. IEEE Conf. On Computer Vision and Pattern Recognition, Jun. 1999, vol. 2, pp. 637–663.
[11] Y. Ivanov and A. Bobick, “Recognition of visual activities and interactions by stochastic parsing,” IEEE Trans. Pattern Recognit. Machine Intell., vol. 2, no. 8, pp. 852–872, Aug. 2000.
[12] S. Weik and C. E. Liedtke, “Hierarchical 3D pose estimation for articulated human body models from a sequence of volume data,” in Proc. Int. Workshop on Robot Vision 2001, Auckland, New Zealand, Feb. 2001, pp. 27–34.
[13] C. R. Wren, A. Azarbayejani, T. Darrell, A. P. Pentland, “Pfinder: Real-time tracking of the human body,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, no. 7, pp. 780–785, Jul. 1997.
[14] J. Shewchuk, “Delaunay refinement algorithms for triangular mesh generation, computational geometry,” Theory Applicat., vol. 23, pp. 21–74, May 2002.
[15] S. Park and J. K. Aggarwal, “Segmentation and tracking of interacting human body parts under occlusion and shadowing,” in Proc. IEEE Workshop on Motion and Video Computing, Orlando, FL, 2002, pp. 105–111.
[16] S. Park and J. K. Aggarwal, “Semantic-level understanding of human actions and interactions using event hierarchy,” in Proc. 2004 Conf. Computer Vision and Pattern Recognition Workshop, Washington, DC, Jun. 2, 2004.
[17] Y. Guo, G. Xu, and S. Tsuji, “Understanding human motion patterns,”in Proc. IEEE Int. Conf. Pattern Recognition, 1994, vol. 2, pp. 325–329.
[18] Y. Guo, G. Xu, and S. Tsuji, “Tracking human body motion based on a stick figure model,” J. Vis. Commun. Image Representat., vol. 5, pp. 1–p, 1994.
40
[19] J. Ben-Arie, Z.Wang, P. Pandit, and S. Rajaram, “Human activity recognition using multidimensional indexing,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 8, pp. 1091–1104, Aug. 2002.
[20] ABI Research, "Video surveillance revenue to approach $17 billion in 2011, " www.abiresearch.com, July 21, 2010. Available: http://www.abiresearch.com/eblasts/archives/analystinsider_template.jsp?id=230.
[21] J. W. Hsieh, Y. T. Hsu, H. Y. Liao and C. C. Chen, Chih-Chiang Chen, "Video-based human movement analysis and its application to surveillance systems, " IEEE Trans. on Multimedia, vol.10, n.3, p.372-384, April 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊