(3.227.235.183) 您好!臺灣時間:2021/04/13 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李姈
研究生(外文):Ling Lee
論文名稱:應用ARCS 動機模型於設計機器小助教對學習動機持續性之影響
論文名稱(外文):Applying the ARCS model to Design Robot Teaching Assistant for Sustaining Learning Motivation
指導教授:陳年興陳年興引用關係
指導教授(外文):Nian-Shing Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:132
中文關鍵詞:機器人小助教(RTA)ARCS 動機模型學習成效教育機器人學習動機的持續性
外文關鍵詞:Learning PerformanceEducational RobotSustainability of Learning MotivationARCS ModelRobot Teaching Assistant (RTA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
儘管許多學者指出教育機器人能激發學習者的學習動機,但是學習動機卻會自然地隨時間而遞減。多數學者認為學習動機的持續性通常與教學策略有密切的關係,也就是說在將教育機器人用來輔助教學的情況下,也應該要有相對應教學策略的配合,才能讓學習者的學習動機持續地維持。ARCS動機模型提供一個系統化的教學策略,能夠提升並維持學習動機;然而ARCS動機模型被提出時並無提供具體的實作方法。隨著教育機器人的快速發展,人型機器人(Humanoid Robot)具有移動性、肢體動作表現、表情與互動性等特色,使其適合應用於教學情境中。因此,本研究目標在於設計一個結合機器人小助教(Robot Teaching Assistant; RTA)與ARCS動機模型的教學策略。本研究根據研究目的進行系統設計與實作,並將此教學策略應用於英文閱讀學習上,同時透過準實驗法與問卷調查法來進行研究數據的收集與策略效果的評估。學習者在經過實驗性教學後,進行一系列的統計分析以探討「機器人小助教結合ARCS動機模型」之教學策略對學習動機的持續性、學習成效以及系統持續使用意圖之影響。研究結果顯示「機器人小助教結合ARCS動機模型」之教學策略對學習動機的持續性、學習成效與系統持續使用意圖具有顯著地正向助益。
Although many researchers have pointed out that educational robots can motivate student learning, learning motivation inevitably declines over time. The sustainability of learning motivation is closely related to instructional strategies. In other words, appropriate instructional strategies are still essential to sustain a learner''s learning motivation in robot-assisted instructions. The ARCS model provides systematic guidelines for enhancing and sustaining learning motivation; however, it provides very limited instructional practices in the model. Recent development in educational robot grows rapidly. A humanoid robot, which has a tangible and attractive body and limbs, is able to perform movements and gestures and to interact with its users. This study aims to develop instructional strategies and activities based on the ARCS model and the specific features of the robot teaching assistant (RTA) to enhance and sustain motivation in learning English reading skills. A quasi experiment and a survey were conducted to evaluate the effects of the designed strategies and activities. The results showed that the design of the RTA-based activities following the ARCS model for learning English reading skills was positively and significantly contributed to students’ learning motivation, learning performance and continuance intention.
致謝 ................................................................................................................................ iii
摘要 ................................................................................................................................ iv
Abstract ............................................................................................................................. v
目錄 ................................................................................................................................ vi
圖目錄 ........................................................................................................................... viii
表目錄 .............................................................................................................................. x
第一章、緒論 .................................................................................................................. 1
第一節、研究背景與動機 .......................................................................................... 1
第二節、研究目的與問題 .......................................................................................... 3
第二章、文獻探討 .......................................................................................................... 5
第一節、動機模型 ...................................................................................................... 5
第二節、教育機器人 ................................................................................................ 13
第三節、認知負荷 .................................................................................................... 15
第三章、系統與學習教材設計 .................................................................................... 17
第一節、Joyful Classroom Learning System (JCLS) ............................................... 17
第二節、機器人小助教與ARCS 動機模型 ............................................................ 19
第三節、學習教材 .................................................................................................... 33
第四章、研究方法 ........................................................................................................ 35
第一節、研究架構與操作型定義 ............................................................................ 35
第二節、研究假說 .................................................................................................... 36
第三節、實驗設計 .................................................................................................... 37
第四節、實驗工具 .................................................................................................... 51
第五節、資料分析方法 ............................................................................................ 53
第五章、結果與討論 .................................................................................................... 54
第一節、正式施測之受測樣本來源 ........................................................................ 54
第二節、學習動機的持續性分析 ............................................................................ 55
第三節、學習成效分析 ............................................................................................ 79
第四節、系統持續使用意圖分析 ............................................................................ 80
第五節、認知負荷分析 ............................................................................................ 81
第六節、綜合討論 .................................................................................................... 82
第六章、結論 ................................................................................................................ 87
第一節、研究發現 .................................................................................................... 87
第二節、研究貢獻 .................................................................................................... 88
第三節、研究限制 .................................................................................................... 89
第四節、未來研究 .................................................................................................... 90
參考文獻 ........................................................................................................................ 91
附錄一、實驗性教學前測問卷 .................................................................................. 104
附錄二、實驗性教學後測問卷 .................................................................................. 107
附錄三、學習成效前測試題 ...................................................................................... 110
附錄四、學習成效後測試題 ...................................................................................... 112
附錄五、觀察指標 ...................................................................................................... 114
附錄六、訪談大綱 ...................................................................................................... 115
附錄七、學習單 .......................................................................................................... 117
Adams, J. S. (1963). Towards an understanding of inequity. Journal of Abnormal and Social Psychology, 67(5), 422-436.
Allen, M. W. (2003). Michael Allen''s Guide to e-learning: Building Interactive, Fun and Effective Learning Programs for Any Company. New York, NY: John Wiley & Sons.
Alonso, M., Py, D., & Lemeunier, T. (2008). A Learning Environment for Object-Oriented Modeling, Supporting Metacognitive Regulations. In P. Díaz, Kinshuk, I. Aedo & E. Mora (Eds.), Proceedings of 8th IEEE International Conference on Advanced Learning Technologies (ICALT 2008) (pp. 69-73). Cantabria, Spain: IEEE Computer Society Press.
Anderson, N. J. (2008). Active Skills for Reading, Book 3. Boston: Heinle Cengage.
Anderson, R. C., Wilson, P. T., & Fielding, L. G. (1988). Growth in Reading and How Children Spend Their Time Outside of School. Reading Research Quarterly, 23(3), 285-303.
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. doi: citeulike-article-id:1079984
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H. Freeman.
Bandura, A., & Schunk, D. H. (1981). Cultivating competence, self-efficacy, and intrinsic interest through proximal self-motivation. Journal of Personality and Social Psychology, 4(3), 586-598. doi: citeulike-article-id:6760760
Barfield, W. (1986). Expert-novice differences for software: implications for problem-solving and knowledge acquisition. Behaviour & Information Technology 5(1), 15-29.
Barker, B. S., & Ansorge, J. (2007). Robotics as Means to Increase Achievement Scores in an Informal Learning Environment. Journal of Research on Technology in Education, 39(3), 229-243.
Berlyne, D. E. (1965). Motivational problems raised by exploratory and epistemic behavior. In D. E. Berlyne (Ed.), Psychology: A study of a science (Vol. 5). New York: McGraw-Hill.
Boik, R. (1988). The mixed model for multivariate repeated measures: validity conditions and an approximate test. . Psychometrika, 53(4), 469-486.
Bolliger, D. U., Supanakorn, S., & Boggs, C. (2010). Impact of podcasting on student motivation in the online learning environment. Computers & Education, 55(2), 714-722.
Brewster, S. A., & King, A. (2005, 18-20 March 2005). The design and evaluation of a vibrotactile progress bar. Proceedings of First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005(WHC 2005) (pp. 499-500).
Bruner, J. S. (1964). Some theorem on instruction illustrated with reference to mathematics. In E. R. Hilgard (Ed.), Theories of Learning and Instruction (pp. 306-335). Chicago: University of Chicago Press.
Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct Measurement of Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 53-61.
Chang, C. W., Lee, J. H., Chao, P. Y., Wang, C. Y., & Chen, G. D. (2010). Exploring the Possibility of Using Humanoid Robots as Instructional Tools for Teaching a Second Language in Primary School. Educational Technology & Society, 13(2), 13-24.
ChanLin, L., & Chan, K. (1996). Computer graphics and metaphorical elaboration for learning science concepts. Paper presented at the Annual Meeting of the Association for Educational Communication and Technology (AECT), Indianapolis, IN.
Chen, N. S., Hung, I. C., Lee, L., & Wei, C. W. (2010). Exploring the Impact of Children’s Mathematics Learning in the Ubiquitous Learning System with Robot Learning Companion. Proceedings of Asia-Pacific Conference on Technology Enhanced Learning 2010 (APTEL 2010) (pp. Kansai University, Osaka, Japan.
Chen, N. S., Hung, I. C., & Wei, C. W. (2010). Developing Ubiquitous Learning System with Robots for Children''s Learning. Proceedings of The Third IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning (DIGITEL 2010) (pp. 61-68). Kaohsiung City, Taiwan: IEEE Computer Society.
Cheng, Y. C., & Yeh, H. T. (2009). From concepts of motivation to its application in instructional design: Reconsidering motivation from an instructional design perspective. British Journal of Educational Technology, 40(4), 597-605.
Chiu, C.-M., & Wang, E. T. G. (2008). Understanding Web-based learning continuance intention: The role of subjective task value. Information & Management, 45, 194-201.
Choi, H. J., & Johnson, S. D. (2005). The Effect of Context-Based Video Instruction on Learning and Motivation in Online Courses. American Journal of Distance Education, 19(4), 215 - 227.
Chou, H. W. (2001). Influences of cognitive style and training method on training effectiveness. Computer & Education, 37, 11-25.
Christophel, D. M. (1990). The relationships among teacher immediacy behaviors, student motivation, and learning. Communication Education, 39(4), 323 - 340.
Chung, P. Y., Chang, C. J., Liang, Y. D., Shih, B. Y., Lin, M. Z., Chen, T. H., et al. (2010). Design, Development and Learning Assessment by Applying NXT Robotics Multi-Media Learning Materials: A Preliminary Study to Explore Students’Learning Motivation World Academy of Science, Engineering and Technology, 65, 1102-1106.
Ciernak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? . Computers in Human Behavior, 25(2), 315-324.
Corbalan, G., Paas, F., & Cuypers, H. (2010). Computer-based feedback in linear algebra: Effects on transfer performance and motivation. Computers & Education, 55(2), 692-703.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
DeLeeuw, L. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 1, 223-234.
Denzin, N. K. (1978). The Research Act: A Theoretical Introduction to Sociological Methods. Chicago: Aldine Publishing Co.
Dewey, J. (1963). Experience and Education. New York: Collier Books.
Driscolll, M. (2005). Psychology of Learning for Instruction (3 ed.). New York: Allyn & Bacon.
Fasola, J., & Matarić, M. J. (2010). Robot Motivator: Increasing User Enjoyment and Performance on a Physical/Cognitive Task. Proceedings of International Conference on Development and Learning (ICDL) (pp. Ann Arbor, MI.
Feng, S. L., & Tuan, H. L. (2005). Using ARCS Model to Promote 11th Graders'' Motivation and Achievement in Learning about Acids and Bases. International Journal of Science and Mathematics Education, 3(3), 463-484. doi: 10.1007/s10763-004-6828-7
Frymier, A. B., & Shulman, G. M. (1995). “What''s in it for me?”: Increasing content relevance to enhance students'' motivation. Communication Education, 44(1), 40 - 50.
Gagne, R. M. (1985). The conditions of learning (4 ed.). New York: Holt, Rinehart and Winston. .
Gagne, R. M., & Medsker, K. L. (1996). The Conditions of Learning: Training Applications. New York: Ted Buchholz.
Greenhouse, S. W., & Geisser, S. (1959). On Methods in Analysis of Profile Data. Psychometrika, 24, 95-112., 24, 95-112.
Gunning, T. G. (2010). Reading Comprehension Boosters. New Jersey: John Wiley & Sons Inc.
Han, J., Jo, M., Park, S., & Kim, S. (2005, 13-15 Aug. 2005). The educational use of home robots for children. Proceedings of Robot and Human Interactive Communication, 2005. ROMAN 2005. IEEE International Workshop on (pp. 378-383).
Han, J., & Kim, D. (2009). r-Learning services for elementary school students with a teaching assistant robot. Paper presented at the Proceedings of the 4th ACM/IEEE international conference on Human robot interaction, La Jolla, California, USA.
Hirumi, A., & Bowers, D. R. (1991). Enhancing Motivation and Acquisition of Coordinate Concepts by Using Concept Trees. Journal of Educational Research, 84(5), 273-279.
Huang, W., & Johnson, J. (2002). Motivational level of a computer-based simulation: a formative evaluation of the US Army Recruiting Simulation (USAREC). Paper presented at the Annual Convention of the Association for Educational Communication and Technology (AECT 2003), Dallas, TX.
Huang, W. H. (2011). Evaluating learners’ motivational and cognitive processing in an online game-based learning environment Computers in Human Behavior, 27(2), 694-704.
Hull, C. (1943). Principles of Behavior. New York: Appleton-Century-Crofts.
Huynh, H., & Feldt, L. S. (1976). Estimation of the Box Correction for Degrees of Freedom from Sample Data in Randomized Block and Split-Plot Designs. Journal of Educational and Behavioral Statistics, 1(1), 69-82.
Jermann, P., Soller, A., & Mühlenbrock, M. (2001). From mirroring to guiding: A review of the state of art technology for supporting collaborative learning. Paper presented at the EuroCSCL, Maastricht.
John, R. (2003). McGraw-Hill''s GED Language Arts, Reading Workbook. United States: McGraw-Hill.
Johnson, J. (2003). Children, robotics, and education. Artificial Life and Robotics, 7(1), 16-21. doi: 10.1007/bf02480880
Jones, V., Jo, J. H., & Han, J. (2006). The Future of Robot-Assisted Learning in the Home. International Journal of Pedagogies and Learning, 2(1), 63-75.
Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13, 351-371.
Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and peer tutors for children: a field trial. Hum.-Comput. Interact., 19(1), 61-84. doi: 10.1207/s15327051hci1901&2_4
Kanda, T., & Ishiguro, H. (2005). Communication Robots for Elementary Schools. Paper presented at the Proceedings of the Symposium Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction(AISB 2005).
Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers & Education, 55(2), 427-443. doi: citeulike-article-id:6834683
Keller, J. M. (1983). Motivational design of instruction. In C. M. Regality (Ed.), Instructional-design theories and models: An overview of their current status (pp. 386-434). Hillsdale, New Jersey: Lawrence Erlbaum Association.
Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 10(3), 2-10. doi: 10.1007/bf02905780
Keller, J. M. (2008). An integrative theory of motivation, volition, and performance. Technology, Instruction, Cognition, and Learning, 6, 79-104.
Keller, J. M. (2010). Motivational Design for Learning and Performance: The ARCS Model Approach: Springer.
Keller, J. M., & Burkman, E. (1993). Motivation principles. In M. Fleming & W. Levie (Eds.), Instructional message design: Principles for the behavioral and cognitive science (pp. 3-53): Englewood Cliffs, NJ: Educational Technology Publication.
Kidd, C. D., & Breazeal, C. (2004). Effect of a robot on user perceptions. Proceedings of Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on (pp. 3559-3564 vol.3554).
Kim, C., & Keller, J. M. (2008). Effects of motivational and volitional email messages (MVEM) with personal messages on undergraduate students’ motivation, study habits and achievement. British Journal of Educational Technology, 39(1), 36-51.
Kirk, R. E. (1995). Experimental Design: Procedures for the Behavioral Sciences (3rd ed.). Pacific Grove, CA: Brooks/Cole.
Klassner, F., & Anderson, S. D. (2003). LEGO MindStorms: not just for K-12 anymore. Robotics & Automation Magazine, IEEE, 10(2), 12-18.
Kleinginna, P. R., & Kleinginna, A. M. (1981). A categorized list of motivation definitions, with a suggestion for a consensual definition. Motivation and Emotion, 5(3), 263-291. doi: 10.1007/bf00993889
Kocaman-Karoglu, A., Kiraz, E., & Ozden, M. Y. (2008). ARCS Motivation Model in the Design and Development of a Blended Course. In J. Luca & E. R. Weippl (Eds.), Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2008 (pp. 2093-2098). Vienna, Austria: AACE.
Kolb, D. A. (1984). Experiential Learning: Experience as the source of learning and development. New Jersey: Prentice Hall.
Kraft, D., & Sakofs, M. (1985). The Theory of experiential education. Boulder, Colorado: Association for Experiential Education.
Kurhila, J., Miettinen, M., Nokelainen, P., & Tirri, H. (2004, 30 Aug.-1 Sept. 2004). The role of the learning platform in student-centred e-learning. Proceedings of Advanced Learning Technologies, 2004. Proceedings. IEEE International Conference on (pp. 540-544).
Lai, S. H. (1999). Fundamentals of TOEFL: Section 3 Reading comprehension. Taipei: Jong Wen Books Co., Ltd.
Li, L. Y., Chang, C. W., & Chen, G. D. (2009). Researches on Using Robots in Education. Paper presented at the Proceedings of the 4th International Conference on E-Learning and Games: Learning by Playing. Game-based Education System Design and Development, Banff, Alberta, Canada.
Liu, E. Z. F., Kou, C. H., Lin, C. H., Cheng, S. S., & Chen, W. T. (2008). Developing multimedia instructional material for robotics education. WTOC, 7(11), 1102-1111.
Liu, E. Z. F., Lin, C. H., & Chang, C. S. (2010). Student satisfaction and self-efficacy in a cooperative robotics course. Social Behavior and Personality, 38(8), 1135-1146.
Luterbach, K. J., & Reigeluth, C. M. (1994). Schools not out, yet. Educational Technology, 34(41), 47-54.
Maehr, M. L. (1976). Continuing Motivation: An Analysis of a Seldom Considered Educational Outcome. Review of Educational Research, 46(3), 443-462.
Marcus, N., Cooper, M., & Sweller, J. (1996). Understanding instructions. Journal of Educational Psychology, 88, 49-63.
Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50, 370-396.
Mauchly, J. W. (1940). Significance test for sphericity of a normal-n-variate distribution. Annals of Mathematical Statistics, 11, 204-209.
McCombs, B. L. (2000). Reducing the achievement gap. Society, 37(5), 29-39.
McDonald, A. (2010). Keeping the vision alive: Maintaining motivation and promoting effective learning. Procedia - Social and Behavioral Sciences, 3, 190-193.
Means, T. B., Jonassen, D. H., & Dwyer, F. M. (1997). Enhancing Relevance: Embedded ARCS Strategies vs. Purpose. Educational Technology Research and Development, 45(1), 5-17.
Meece, J., Pintrich, P. R., & Schunk, D. H. (2009). Motivation in education: theory, research, and applications. New York: Pearson Education.
Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. . Psychological Review, 63(2), 81-97.
Mitnik, R., Nussbaum, M., & Soto, A. (2008). An autonomous educational mobile robot mediator. Auton. Robots, 25(4), 367-382.
Mitnik, R., Recabarren, M., Nussbaum, M., & Soto, A. (2009). Collaborative robotic instruction: A graph teaching experience. Computers & Education, 53(2), 330-342.
Mo, C. C. (1987). A study of English reading comprehension and general guidelines for testing reading. Journal of National Chengchi University, 55, 173-206.
Murphy, P. K., & Alexander, P. A. (2000). A Motivated Exploration of Motivation Terminology. Contemporary Educational Psychology, 25(1), 3-53.
Muton, N. A. R., Zakaria, N., & Damanhoori, F. (2010). A conceptual framework of an e-mentoring system for orphan children using ARCS motivational model. Proceedings of Information Technology (ITSim), 2010 International Symposium in (pp. 1280-1285).
Newby, T. J., Stepich, D. A., Lehman, J. D., & Russell, J. D. (2000). Instructional technology for teaching and learning: Designing instruction, integrating computers, and using media (2 ed.). New York: Prentice Hall.
Nicholls, J. G. (1989). The competitive ethos and democratic education. Cambridge, MA: Harvard University.
Nishimura, Y., Kushida, K., Dohi, H., Ishizuka, M., Takeuchi, J., & Tsujino, H. (2005). Development and psychological evaluation of multimodal presentation markup language for humanoid robots. Proceedings of Humanoid Robots, 2005 5th IEEE-RAS International Conference on (pp. 393-398).
Paas, F. G. W. C. (1992). Training Strategies for Attaining Transfer of Problem-Solving Skill in Statistics: A Cognitive-Load Approach. Journal of Educational Psychology, 84(4), 429-434.
Paas, F. G. W. C., & van Merriënboer, J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychologist, 6, 351-371.
Patton, A. (1970). Executive compensation inequities : Problems of maintaining motivation. [doi: DOI: 10.1016/0007-6813(70)90050-9]. Business Horizons, 13(2), 73-84.
Petrides, J. R. (2006). Attitudes and motivation and their impact on the performance of young English as a foreign language learners. Joanna Rodiki Petrides, 5(1), 1-20.
Pintrich, P. R., & Maehr, M. L. (2004). Motivating students, improving schools: The legacy of carol midgley. London: Elsevier.
Reeve, J. (2005). Understanding motivation and emotion. Hoboken, NJ: Wiley.
Ruiz-del-Solar, J., & Aviles, R. (2004). Robotics courses for children as a motivation tool: the Chilean experience. Education, IEEE Transactions on, 47(4), 474-480.
Ryu, H. J., Kwak, S. S., & Kim, M. S. (2008). Design Factors for External Form of Robots as Elementary School Teaching Assistants. Bulletin of Japanese Society for Science of Design, 54(6), 39-48.
Schwanenflugel, P. J., Kuhn, M. R., Morris, R. D., Morrow, L. M., Meisinger, E. B., Woo, D. G., et al. (2009). Insights into Fluency Instruction: Short- and Long-Term Effects of Two Reading Programs Literacy Research and Instruction, 48(4), 318-336.
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory Psychological Review, 84(2), 127-190.
Shih, C. F., Chang, C. W., & Chen, G. D. (2007, 18-20 July 2007). Robot as a Storytelling Partner in the English Classroom - Preliminary Discussion. Proceedings of Advanced Learning Technologies, 2007. ICALT 2007. Seventh IEEE International Conference on (pp. 678-682).
Shinozawa, K., Naya, F., Yamato, J., & Kogure, K. (2005). Differences in effect of robot and screen agent recommendations on human decision-making. International Journal of Human-Computer Studies 62(2), 267-279.
Skinner, B. F. (1953). Science And Human Behavior. New York: Macmillan.
Small, R. V., & Gluck, M. (1994). The Relationship of Motivational Conditions to Effective Instructional. Educational Techology, 36(8), 33-40.
Song, S., & Keller, J. (2001). Effectiveness of motivationally adaptive computer-assisted instruction on the dynamic aspects of motivation. Educational Technology Research and Development, 49(2), 5-22. doi: 10.1007/bf02504925
Sorensen, R. L., & Maehr, M. L. (1976). Toward the Experimental Analysis of "Continuing Motivation". The Journal of Educational Research, 69(9), 319-322.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285.
Sweller, J., & Cooper, G. A. (1985). The Use of Worked Examples as a Substitute for Problem Solving in Learning Algebra. Cognition and Instruction, 2(1), 59-89.
Sweller, J., Van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive Architecture and Instructional Design. Educational Psychology Review, 10(3), 251-296.
Takeuchi, J., Kushida, K., Nishimura, Y., Dohi, H., Ishizuka, M., Nakano, M., et al. (2006). Comparison of a Humanoid Robot and an On-Screen Agent as Presenters to Audiences. Proceedings of Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on (pp. 3964-3969).
Toro-Troconis, M., Meeran, K., Higham, J., Mellström, U., & Partridge, M. (2010). Design and Delivery of Game-Based Learning for Virtual Patients in Second Life: Initial Findings. In A. Peachey, J. Gillen, D. Livingstone & S. Smith-Robbins (Eds.), Researching Learning in Virtual Worlds (pp. 111-138). London: Springer.
Tuckman, B. W., Abry, D. A., & Smith, D. R. (2007). Learning and Motivation Strategies: Your Guide to Success New Jersey: Prentice Hall.
Van Gerven, P. W. M., Paas, F., Van Merriënboer, J. J. G., & Schmidt, H. G. (2006). Modality and variability as factors in training the elderly. Applied Cognitive Psychology, 20(3), 311-320.
Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive Load Theory and Complex Learning: Recent Developments and Future Directions. Educational Psychology Review 17(2), 147-177.
Viljaranta, J., Lerkkanen, M. K., Poikkeus, A. M., Aunolaa, K., & Nurmia, J. E. (2009). Cross-Lagged Relations between Task Motivation and Performance in Arithmetic and Literacy in Kindergarten. Learning and Instruction, 19(4), 335-344.
Visser, J., & Keller, J. M. (1990). The Clinical Use of Motivational Messages: An Inquiry into the Validity of the ARCS Model of Motivational Design. Instructional Science, 19(6), 467-500.
Vroom, V. H. (1964). Work and motivation. New York: Wiley.
Wang, H. S., Tsai, S. N., Chou, C. H., & Hung, H. J. (2010). The study of motivation and reasoning faculties of game-based learning in elementary school students. Paper presented at the 2nd international Conference on Education Technology and Computer (ICETC 2010), Shanghai, China.
Warschauer, M. (2007). The paradoxical future of digital learning. Learning Inquiry, 1(1), 41-49.
Wei, C. W., Hung, I. C., Lee, L., & Chen, N. S. (2011). A Joyful Classroom Learning System with Robot Learning Companion for Children to Learn Mathematics Multiplication. Turkish Online Journal of Educational Technology, 10(2).
Weiner, B. (1974). Achievement motivation and attribution theory. Morristown, N.J.: General Learning Press.
Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review, 92(4), 548-573.
Yamakawa, Y., Ohsiro, M., Matsushita, K., Mackin, K. J., & Nunohiro, E. (2010). Programming Learning Support System ‘CAPTAIN’ with Motivational Study Model. Paper presented at the The 18th International Conference on Computers in Education(ICCE 2010), Putrajaya, Malaysia: Asia-Pacific Society for Computers in Education.
Yang, Y. C. (1992). The Effects of Media on Motivation and Content Recall: Comparison of Computer- and Print-Based Instruction. Journal of Educational Technology Systems, 20(2), 95-105.
You, Z. J., Shen, C. Y., Chang, C. W., Liu, B. J., & Chen, G. D. (2006). A Robot as a Teaching Assistant in an English Class. Sixth IEEE International Conference on Advanced Learning Technologies (ICALT''06), 87-91.
Zuckerman, M. (1971). Dimensions of sensation seeking. Journal of Consulting and Clinical Psychology, 36(1), 45-52.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔