(3.215.183.251) 您好!臺灣時間:2021/04/22 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡文軒
研究生(外文):Wen-shiuan Tsai
論文名稱:以科技接受模型探討科技相容性對使用意圖的影響:以行動運算為例
論文名稱(外文):The Impact of Technology Comparability Variables on the Use of Mobile Computing
指導教授:林東清林東清引用關係劉勇志劉勇志引用關係
指導教授(外文):Tung-Chin LinYung-Chih Liou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:82
中文關鍵詞:行動運算互動理論鑽石模型科技相容性科技接受模型
外文關鍵詞:diamond modeltechnology compatibilitytechnology acceptance modelmobile computinginteraction theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:291
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
因為行動運算在近年來的快速發展,本研究嘗試探討企業員工對於行動運算的接受度。別於以往研究科技接受度大多以個人因素與系統因素兩種觀點,我們根據互動理論的觀點和鑽石模型提出了四種科技相容性。本研究將這四種相容性作為科技接受模型的外在變數,並且對各個相容性與認知有用性和認知易用性之間的影響提出假說。經過本研究的統計分析結果,我們針對各個假說加以討論。最後,我們針對學術上與實務上提出建議,並指出科技相容性對行動運算接受的重要性。
Because of the fast development of mobile computing in recent years, this study attempt to research the acceptance of mobile computing for employees on business. Different from the past studies based on people-determined and system-determined to verify technology acceptance, we base on interaction theory viewpoint and diamond model to create four technology compatibilities. We treat these four compatibilities as external variables of technology acceptance model (TAM), and hypothesize each of the compatibility influencing perceived usefulness and perceived ease of use. According to the analysis result of this study, we focus on these hypotheses to discuss. Final, we also discuss the implications for theory and practice and point out the importance of technology compatibility to mobile computing acceptance.
Chapter 1. Introduction 1
1.1 General Background 1
1.2 Specific Background 3
1.3 Motivation 5
1.4 Expected Contribution 6
Chapter 2. Literature Review and Hypotheses 7
2.1 Mobile Computing Usage 7
2.2 Technology Acceptance Model 8
2.2.1 Perceived Usefulness 10
2.2.2 Perceived Ease of Use 10
2.2.3 External Variables 11
2.3 Interaction Theory 14
2.4 Compatibility 15
2.5 Leavitt’s Diamond Model 16
2.5.1 Technology-Task Compatibility 18
2.5.2 Technology-People Compatibility 20
2.5.3 Technology-Organization Compatibility 22
2.5.4 Technology-Infrastructure Compatibility 23
2.6 Research Model 24
Chapter3. Research Methodology and Data Analysis 26
3.1 Measurement Development 26
3.2 Research Design 30
3.2.1 Questionnaire Design 30
3.2.2 Sampling 31
3.3 Demographic Analysis 32
3.4 Non Response Bias 34
3.5 Common Method Variance 35
3.6 Cross Loading Factor 39
3.7 Reliability and Validity 41
3.8 Structural model 45
Chapter 4. Result Discussion 50
4.1 The influence of perceived ease of use (PEOU) on perceived usefulness (PU) 50
4.2 The influence of technology-task compatibility (TTC) on perceived usefulness (PU) and perceived ease of use (PEOU) 51
4.3 The influence of technology-people compatibility (TPC) on perceived usefulness (PU) and perceived ease of use (PEOU) 52
4.4 The influence of technology-organization compatibility (TOC) on perceived usefulness (PU) 53
4.5 The influence of technology-infrastructure compatibility (TIC) on perceived usefulness (PU) and perceived ease of use (PEOU) 53
4.6 The discrepancy between users who used mobile computing on business and unused mobile computing on business 54
Chapter 5. Implication for Theory and Practice 57
5.1 Implication for theory 57
5.2 Implication for practice 59
Chapter 6. Limitation and Conclusion 62
6.1 Limitations and Suggestions for Future Research 62
6.2 Conclusion 63
References 65
Appendix 69

Agarwal, R., & Prasad, J. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision Sciences, 28(3), 557-582.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. Englewood Cliffs, NJ: Prentice-Hall.
Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. Management Information Systems Quarterly, 25(1), 107-136.
Alexopoulos, G. S., Meyers, B. S., Young, R. C., Campbell, S., Silbersweig, D., & Charlson, M. (1997). The" vascular depression" hypothesis. Archives of General Psychiatry, 54(2), 915-922.
Amberg, M., Hirschmeier, M., & Wehrmann, J. (2004). The compass acceptance model for the analysis and evaluation of mobile services. International Journal of Mobile Communications 2(3), 248-259.
Beatty, R. C., Shim, J. P., & Jones, M. C. (2001). Factors influencing corporate web site adoption: A time-based assessment. Information & Management, 38(6), 337-354.
Brown, S. A., Dennis, A. R., & Venkatesh, V. (2010). Predicting collaboration technology use: Integrating technology adoption and collaboration research. Journal of Management Information Systems, 27(2), 9-54.
Caceres, R., & Iftode, L. (1996). Improving the performance of reliable transport protocols in mobile computing environments. IEEE J. Select. Areas Commun, 13(5), 851-857.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and divergent validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81-105.
Chen, L., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: An extended technology acceptance perspective. Information & Management, 39(8), 705-719.
Chung, S. H., Byrd, T. A., Lewis, B. R., & Ford, F. N. (2005). An empirical study of the relationships between IT infrastructure flexibility, mass customization, and business performance. ACM SIGMIS Database, 36(3), 26-44.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Information Systems Quarterly, 13(3), 319-340.
Dienes, Z., Broadbent, D., & Berry, D. C. (1991). Implicit and explicit knowledge bases in artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(5), 875-887.
Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information & Management, 36(1), 9-21.
Duncan, N. B. (1995). Capturing flexibility of information technology infrastructure: A study of resource characteristics and their measure. Journal of Management Information Systems, 12(2), 37-57.
Fornell, C., & Bookstein, F. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440-452.
Gefen, D., & Straub, D. W. (1997). Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. Management Information Systems Quarterly, 21(4), 389-400.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. Management Information Systems Quarterly, 19(2), 213-236.
Goodwin, N. C. (1987). Functionality and usability. Communications of the ACM, 30(3), 229-233.
Karahanna, E., Agarwal, R., & Angst, C. (2006). Reconceptualizing compatibility beliefs. Management Information Systems Quarterly, 30(4), 781-804.
Kling, R. (1978 Dec.). Automated information systems as social resources in policy making. Paper presented at the ACM. Washington, D.C.
Kling, R. (1980). Social analyses of computing: Theoretical perspectives in recent empirical research. ACM Computing Surveys (CSUR), 12(1), 61-110.
Klopping, I. M., & McKinney, E. (2004). Extending the technology acceptance model and the task and the task-technology fit model to technology fit model to consumer E consumer E-commerce. Information Technology, Learning, and Performance Journal, 22(1), 35-48.
Leavitt, H. J. (1965). Applied organizational change in industry. Rand McNally, Chicago: Handbook of Organizations.
Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(1), 752-780.
Lee, Y. E., & Benbasat, I. (2004). A framework for the study of customer interface design for mobile commerce. International Journal of Electronic Commerce, 8(3), 79-102.
Liang, H., Saraf, N., Hu, Q., & Xue, Y. (2007). Assimilation of enterprise systems: The effect of institutional pressures and the mediating role of top management. Management Information Systems Quarterly, 31(1), 59-87.
Liao, Z., & Landry Jr, R. (2000). An empirical study on organizational acceptance of new information systems in a commercial bank environment, Hawaii.
Lu, J., Yu, C. S., Liu, C., & Yao, J. E. (2003a). Exploring factors associated with wireless internet via mobile technology acceptance in Mainland China. Communications of the International Information Management Association, 3(1), 101-120.
Lu, J., Yu, C. S., Liu, C., & Yao, J. E. (2003b). Technology acceptance model for wireless Internet. Internet Research, 13(3), 206-222.
Lyytinen, K., & Yoo, Y. (2002). Ubiquitous computing. Communications of the ACM, 45(12), 63-65.
Markus, M. L. (1983). Power, politics, and MIS implementation. Communications of the ACM, 26(6), 430-444.
Markus, M. L., & Robey, D. (1983). The organizational validity of management information systems. Human Relations, 36(3), 203-225.
Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
Pagani, M. (2004). Determinants of adoption of third generation mobile multimedia services. Journal of Interactive Marketing, 18(3), 46-59.
Pavlou, P. A., & Gefen, D. (2005). Psychological contract violation in online marketplaces: Antecedents, consequences, and moderating role. Information Systems Research, 16(4), 372-412.
Pfeffer, J. (1982). Organizations and organization theory. United States: Pitman Publishing.
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903.
Radner, R., & Rothschild, M. (1975). On the allocation of effort. Journal of Economic Theory, 10(3), 358-376.
Ramiller, N. C. (1994). Perceived compatibility of information technology innovations among secondary adopters: Toward a reassessment. Journal of Engineering and Technology Management, 11(1), 1-23.
Rogers, E. M. (1995). Diffusion of innovations. New York: Free Press.
Rogers, E. M., & Shoemaker, F. F. (1971). Communication of innovations. New York: Free Press.
Satyanarayanan, M., Kistler, J., Mummert, L., Ebling, M., Kumar, P., & Lu, Q. (1996). Experience with disconnected operation in a mobile computing environment. IEEE Transactions on Computers, 39(4), 537-570.
Speier, C., & Venkatesh, V. (2002). The hidden minefields in the adoption of sales force automation technologies. The Journal of Marketing, 66(3), 98-111.
Tashakkori, A., & Thompson, V. D. (1991). Race differences in self-perception and locus of control during adolescence and early adulthood: Methodological implications. Genetic, Social, and General Psychology Monographs, 117(2), 133-152.
Tornatzky, L. G., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on Engineering Management, 29(1), 28-45.
Tulu, B., Burkhard, R., Horan, T. A., & Thomas, A. (2006). Information systems and health care XIV: Continuing use of medical information systems by medical professionals: Empirical evaluation of a work system model. Communications of the Association for Information Systems, 18(1), 641-656.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Vroom, V. H. (1964). Work and motivation. New York: Wiley.
Williams, L. J., Edwards, J. R., & Vandenberg, R. J. (2003). Recent advances in causal modeling methods for organizational and management research. Journal of Management, 29(6), 903-936.
Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729.
Wu, J. H., Wang, S. C., & Lin, L. M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International journal of medical informatics, 76(1), 66-77.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔