(18.206.177.17) 您好!臺灣時間:2021/04/11 03:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉鎮臺
研究生(外文):Chen-Tai Teh
論文名稱:使用時域有限差分法模擬與分析微帶線饋入的介質共振器天線
論文名稱(外文):The Analysis and Simulation of Microstrip-Fed Dielectric Resonator Antenna Using FDTD Method
指導教授:郭志文郭志文引用關係
指導教授(外文):Chih-Wen Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:92
中文關鍵詞:時域有限差分法介質共振器天線動差法
外文關鍵詞:Finite-Difference Time-DomainDielectric Resonator AntennasMethod of Moment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
介質共振器天線(DRA)比起傳統微帶天線有許多吸引人的特性,像是尺寸小、低姿態、輕、容易激發,在高頻段擁有高輻射效率。隨著DRA受到越來越多的注目,理論分析已經不足以滿足人們對於分析介質共振器的需求。
因而許多研究人員以數值分析的方法,如時域有限差分法(FDTD)、動差法(MoM)、有限元素法(FEM)等方法來分析模擬介質共振器天線。本論文說明比較了FDTD與MoM在模擬DRA上的差異性,並以FDTD去模擬分析各種不同結構的DRA。
對於DRA設計方面,本文以理論近似公式求得DRA尺寸的概略值,並以FDTD做精確的分析,最後本文實際去設計一個工作在5.8GHz的DRA,並以一種L形微帶線來增大DRA的阻抗頻寬。由以上的研究希望能建立出快速且準確的一套程序來求得DRA的共振頻率、工作頻寬與遠場場形圖,以縮短工程師設計DRA的時間。

Dielectric resonator antennas(DRAs) offer some attractive characteristics over conventional microstrip antennas, such as small size, low profile, light weight, ease of excitation, and high radiation efficiency at higher frequency bands. Since DRAs attract more and more attention, theoretical analysis have been insufficient to simulate various configurations of dielectric resonator antennas.
Therefore some researchers introduce numerical methods to analyze DRAs, such as Finite Difference Time Domain (FDTD) method, Method of Moment (MoM), Finite Element Method (FEM). In this author, we apply two kinds of methods, including FDTD and MoM, to analysis DRA and compare the results applied these two methods. Then we simulate various configurations of dielectric resonator antennas using FDTD method.
About designing the DRA construction, in this author we applied an equivalent approach to solve approximate dimensions of DRAs, and then we obtain accurate dimensions using FDTD method. In this author,a DRA work at 5.8GHz have been proposed, then we using a L-shaped patch to increase impedance bandwidth. Above all, we hope to built a fast and accurate procedure to solve the resonant frequency, bandwidth, and far field pattern of DRAs. And to supply the engineer to reduce time consume in design DRAs.
目錄

第一章 序論
1.1 研究動機與目的...........................................................................................1
1.2 論文大綱.......................................................................................................4
第二章 介質共振器天線
2.1 介質共振器發展簡介...................................................................................5
2.2 介質共振器天線簡介...................................................................................7
2.3 介質共振器天線的參數.............................................................................12
2.3.1 天線參數....................................................................................12
2.3.2 介質共振器參數........................................................................13
2.3.3 介質共振器的介電常數............................................................14
2.3.4 介質共振器的品質因子............................................................15
2.3.5 共振頻率溫度係數……............................................................16
2.4 介質共振器天線的特性.............................................................................17
第三章 數值分析方法
3.1 介紹.............................................................................................................20
3.2 時域有限差分法.........................................................................................20
3.2.1 FDTD公式推導........................................................................21
3.2.2 Courant穩定準則......................................................................25
3.2.3 阻抗性電壓源與電阻模擬........................................................26
3.2.4 吸收邊界條件............................................................................28
3.2.5 細導線修正公式........................................................................29
3.2.6 近遠場轉換................................................................................31
3.2.7 FDTD曲狀介質結構的處理....................................................33
3.3 動差法.........................................................................................................36
3.4 有限時域差分法與動差法的比較.............................................................39
第四章 運用FDTD模擬介質共振器天線
4.1 矩形介質共振器天線.................................................................................44
4.1.1 微帶線饋入的矩形介質共振器天線........................................44
4.1.2 微帶線貼面饋入的矩形共振器天線........................................47
4.2 圓柱形介質共振器天線.............................................................................48
4.3 半球形介質共振器天線.............................................................................51
4.4 實做量測矩形介質共振器天線.................................................................54
4.5 槽孔耦合….................................................................................................58
4.6 同軸探針耦合….........................................................................................59
4.7 介質損耗與接地面尺寸效應….................................................................61
4.8 介質共振器與饋入結構之間的耦合.........................................................64
第五章 介質共振器天線之設計
5.1 半球形介質共振器天線.............................................................................67
5.2 圓柱形介質共振器天線.............................................................................69
5.3 矩形介質共振器天線….............................................................................71
5.4 介質共振器天線設技實例.........................................................................74
5.5 寬頻化的介質共振器天線.........................................................................75
第六章 結論............................................................................................................78

參考文獻

[1] R. D. Richtmyer, “Dielectric Resonators,” Journal of Applied Physics, Vol.10, Issue.6, pp.391~398, 1939.

[2] A. Okaya, L. F. Barash, “The Dielectric Microwave Resonator,” proceedings of the IRE, pp.2081~2092, October 1962.

[3] M. Gastine, , L. Courtois, J. L. Dormann, “Electromagnetic Resonances of Free Dielectric Spheres,” IEEE Trans. Microwave Theory and Techniques, Vol.15, Issue.12, pp.694~700, 1967.

[4] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Trans. Microwave Theory and Techniques, Vol.16, Issue.4, pp.218~227, 1968.

[5] S. Long, M. McAllister, Shen Liang, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas and Propagation, Vol.31, Issue.3, pp.406~412, 1983.

[6] A. Petosa, A. Ittipiboon, Y. M. M. Antar, D. Roscoe, M. Cuhaci, “Recent advances in dielectric-resonator antenna technology,” IEEE Antennas and Propagation Magazine, Vol.40, Issue.3, pp.35~48, 1998.

[7] Y. X. Guo, K. M. Luk, K. W. Leung, “Mutual coupling between rectangular dielectric resonator antennas by FDTD,” IEE Proceedings - Microwaves, Antennas and Propagation, Vol.146, Issue.4, pp.292~294, 1999.

[8] S. M. Shum, K. M. Luk, “FDTD analysis of probe-fed cylindrical dielectric resonator antenna,” IEEE Trans. Antennas and Propagation, Vol.46, Issue.3, pp.325~333, 1998.

[9] A. Buerkle, K. Sarabandi, H. Mosallaei, “Compact slot and dielectric resonator antenna with dual-resonance, broadband characteristics,” IEEE Trans. Antennas and Propagation, Vol.53, Issue.3, pp.1020~1027, 2005.

[10] S. M. Shum, K. M. Luk, “Analysis of aperture coupled rectangular dielectric resonator antenna,” Electronics Letters, Vol.30, Issue.21, pp.1726~1727, 1994.

[11] M. S. M. Aras, M. K. A. Rahim, A. Asrokin, M. Z. A. A. Aziz, “Dielectric resonator antenna (DRA) for wireless application,” IEEE International RF and Microwave Conference, 2008.RFM 2008, pp.454~458, 2008.

[12] M. F. Ain, S. I. S. Hassan, M. R. Jaffar, M. A. Othman, M. N. Ismail, A. Othman, A. A. Sulaiman, M. A. Zakariyya, S. Sreekantan, S. D. Hutagalung, Z. A. Ahmad “Small and compact rectangular dielectric resonator antenna for WLAN applications,” IEEE International RF and Microwave Conference, 2008. RFM 2008, pp.106~108, 2008.

[13] A. S. Al-Zoubi, A. A. Kishk, A. W. Glisson, “Aperture Coupled Rectangular Dielectric Resonator Antenna Array Fed by Dielectric Image Guide, ” IEEE Trans. Antennas and Propagation, Vol.57, Issue.8, pp.2252~2259, 2009.

[14] R. K. Mongia, A. Ittibipoon, M. Cuhaci, “Low profile dielectric resonator antennas using a very high permittivity material,” Electronics Letters, Vol.30, Issue.17, pp.1362~1363, 1994.

[15] H. Y. Lo, K. W. Leung, K. M. Luk, E. K. N. Yung, “Low profile triangular dielectric resonator antenna,” IEEE Antennas and Propagation Society International Symposium, Vol.4, pp.2088~2091, 2000.

[16] Rajesh Kumar Mongia, Apisak Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antennas and Propagation, Vol.45, No.9, September 1997.

[17] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antenna and Propagation, vol.14, No.3, pp.300~307, May 1966.

[18] R. J. Luebbers, H. S. Langdon, “A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations,” IEEE Trans. Antennas and Propagation, Vol.44, Issue.7, pp.1000~1005, 1996.

[19] R. M. Makinen, J. S. Juntunen, M. A. Kivikoski, “An improved thin-wire model for FDTD,” IEEE Trans. Microwave Theory and Techniques, Vol.50, Issue.5, pp.1245~1255, 2002.

[20] A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed:Artech House 2000.

[21] Tao Su, Yongjun Liu, Wenhua Yu, R. Mittra, “A conformal mesh-generating technique for the conformal finite-difference time-domain (CFDTD) method,” IEEE Antennas and Propagation Magazine, Vol.46, Issue.1, pp.37~49, 2004.

[22] Wenhua Yu, R. Mittra, “A conformal finite difference time domain technique for modeling curved dielectric surfaces,” IEEE Microwave and Wireless Components Letters, Vol.11, Issue.1, pp.25~27, 2001.

[23] Y. Ge, K. P. Esselle, “Microwave dielectric-resonator antenna analysis and design,” Microwave Conference, 2000 Asia-Pacific, pp.1473~1476, 2000.

[24] Y. Ge, K. P. Esselle, “The analysis of a rectangular dielectric resonator antenna using the method of moments,” IEEE Antennas and Propagation Society International Symposium, 2000. Vol.3, pp.1454~1457, 2000.

[25] A. B. Kakade, B. Ghosh, “Efficient Technique for the Analysis of Microstrip Slot Coupled Hemispherical Dielectric Resonator Antenna,” IEEE Antennas and Wireless Propagation Letters, Vol.7, pp.332~336, 2008.

[26] D. Yau, M. V. Shuley, “Numerical analysis of an aperture coupled rectangular dielectric resonator antenna using a surface formulation and the method of moments,” IEE Proceedings - Microwaves, Antennas and Propagation, Vol.146, Issue.2, pp.105~110, 1999.

[27] A.Petosa, Dielectric resonator antenna handbook, Artech House, Boston, Feb.2007

[28] J. Van Bladel, “On the Resonances of a Dielectric Resonator of Very High Permittivity,” IEEE Trans. Microwave Theory and Techniques, Vol.23, Issue.2, pp.199~208, 1975.

[29] J. Van Bladel, “The Excitation of Dielectric Resonators of Very High Permittivity,” IEEE Trans. Microwave Theory and Techniques, Vol.23, Issue.2, pp.208~217, 1975.

[30] Alexandre Perron, Tayeb A. Denidni, Abdel R. Sebak, “computer aided-design and analysis of dielectric resonator antennas,” International Journal of RF and Microwave Computer-Aided Engineering, Vol.20, No.1, January 2010.

[31] R. Kumar Mongia, A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antennas and Propagation, Vol.45, Issue.9, pp.1348~1356, 1997

[32] M. Verplanken, J. V. Bladel, “The Electric-Dipole Resonances of Ring Resonators of Very High Permittivity,” IEEE Trans. Microwave Theory and Techniques, Vol.24, Issue.2, pp.108~112, 1976.

[33] A. A. Kishk, “Wide-band truncated tetrahedron dielectric resonator antenna excited by a coaxial probe,” IEEE Trans. Antennas and Propagation, Vol.51, Issue.10, Part2, pp.2913~2917, 2003.

[34] Y. Coulibaly, T. A. Denidni, H. Boutayeb, “Broadband Microstrip-Fed Dielectric Resonator Antenna for X-Band Applications,” IEEE Antennas and Wireless Propagation Letters, Vol.7, pp.341~345, 2008.

[35] X. L. Liang, T. A. Denidni, L. N. Zhang, “Wideband L-Shaped Dielectric Resonator Antenna With a Conformal Inverted-Trapezoidal Patch Feed,” IEEE Trans. Antennas and Propagation, Vol.57, Issue.1, pp.272~274, 2009


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 25、陳信至,離職後競業禁止定型化契約條款之審查方法及判斷標準─由台灣高等法院92年度勞上易自第126號判決談起(中),萬國法律,第142期,2005年8月。
2. 24、陳信至,離職後競業禁止定型化契約條款之審查方法及判斷標準─由台灣高等法院92年度勞上易自第126號判決談起(上),萬國法律,第141期,2005年6月。
3. 23、梁宇賢,監察人之代表權及應否受競業禁止之限制,月旦法學雜誌,第50期,1999年7月。
4. 22、梁宇賢,公司法上公司經理人之職權,月旦法學教室,第18期,2004年4月。
5. 21、邵慶平,組織與契約之間─以董事與公司之關係為例的觀察,月旦法學教室,第65期,2008年3月。
6. 20、林發立,跳槽、競業禁止與保密條款,萬國法律,第100期。
7. 19、林國全,董事競業禁止規範之研究,月旦法學雜誌,第159期,2008年8月。
8. 18、林國全,監察人修正方向之檢討─以日本修法經驗為借鏡,月旦法學雜誌,第73期,2001年6月。
9. 16、林建良、李韋誠、黃郁嵐、劉怡婷、劉懿德,米老鼠的陰影─由迪士尼案看董事之注意義務,月旦民商法雜誌,第19期,2008年3月。
10. 14、林更盛,離職後競業禁止約款─評台北地方法院八十九年勞訴字第七六號判決,月旦法學雜誌,第81期,2002年2月。
11. 11、李惠宗,「我眼明,我也要按摩工作」,月旦法學教室,第17期,2004年3月。
12. 10、李惠宗,立法對於私法契約介入的界線──立法的界線(三):從解救「卡奴」事件談起,月旦法學教室,第41期,2006年3月。
13. 9、李素華,競業禁止與營業秘密保護──從德國立法例看我國科技保護法(草案)之力法爭議,萬國法律,第131期,2003年10月。
14. 8、李洙德,勞動契約中的誠實信用與公平正義─高等法院九十三年勞上字第七五號判決評釋,法令月刊,第57卷,第9期,2006年9月。
15. 5、王服清、張國華、許炳華,從憲法觀點批判著作權法上援用「公序良俗條款」的正當性問題─色情光碟片為探討中心,法令月刊,第57卷,第11期,2006年11月。
 
系統版面圖檔 系統版面圖檔