(3.236.228.250) 您好!臺灣時間:2021/04/17 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊上賢
研究生(外文):Shang-Hsien Yang
論文名稱:自動增益控制器、高壓積體電路、底板收發器之研製
論文名稱(外文):Study and Implementation of Automatic Gain Control, High Voltage Integrated Circuits, and Backplane Transceiver
指導教授:王朝欽
指導教授(外文):Chua-Chin Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:156
中文關鍵詞:高壓製程可變增益法大器自動增益控制器充電電路運算轉導放大器底板收發器
外文關鍵詞:OTADFEpre-emphasisPDSSPDVGAAGCBCDCharger
相關次數:
  • 被引用被引用:0
  • 點閱點閱:441
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:94
  • 收藏至我的研究室書目清單書目收藏:0
托CMOS積體電路技術進步之福,許多傳統上由BJT類比製程的電路,逐漸的被整合到CMOS電路製程裡。截至目前為止,將數位、類比、甚至高壓元件通通整合至一單晶片(System-on-a-Chip,SoC)之技術已逐漸成熟。為了迎接新技術所帶來的新挑戰,本論文將專注在三個重要的議題上加以討論、設計、與實作,並希望提供能夠重複使用之設計方法。
本論文第一個主題探討自動增益控制器之理論與實作。在電路實現的部分,包含了一分貝線性可變增益放大器、高輸入輸出擺幅之可變增益放大器、雙偵測單儲存峰值偵測器、前授輸出擺幅自動增益控制器、與可程式化增益放大器。
第二個主題探討高壓製程電路的研製。本主題涵蓋了將低電壓類比訊號轉成高電壓高擺幅訊號之運算放大器與一串聯式電池充電電路。另外,關於高壓製程之相關特性,在本論文裡一併加以討論。
最後一個主題專注於底板收發器之設計,包含了一預加重發送器與判斷回授平等化接受器之電路實作。發送器電路之傳送速度可高達每秒500 Mbps,接收器之接收速度則約125 Mbps。
Thanks to the advance in CMOS technology, an extensive category of applications has been migrated from traditional BJT-based processes. System-on-a-Chip (SoC) realization of digital, analog, and even high voltage devices is now a reality. To address the challenge imposed by integrating analog and high voltage devices in standard CMOS processes, this thesis aims at the design of three specific topics in particular.
With regard to the contents of the thesis, first of all, the theory of linear-in-dB automatic gain control (AGC) is discussed. In succession, a linear-in-dB variable gain amplifier (VGA) is mentioned. The implementation of a Feed-forward Output Swing Prediction AGC featuring a Prediction Parallel-Detect Single-Store Peak Detector (PDSSPD) and a High Input/Output Swing VGA is also described. Furthermore, a digitally programmable gain amplifier for a ZigBee wireless receiver is also mentioned.
In response to the advent of CMOS-compatible high voltage tolerant Bipolar-CMOS-DMOS (BCD) process, an operational amplifier for level converting operation is disclosed. A 60-V Li-ion battery charger has also been proposed, along with a novel battery charge mode, namely, the incremental charge (IC) mode. Practical issues regarding the high voltage tolerant BCD process is also briefly discussed.
Finally, a backplane transmitter featuring pre-emphasis and a receiver utilizing decisive feedback equalization (DFE) designed for CIC MorPack technology are presented. When packaged in a Leadless Ceramic Carrier (LCC) package, the transmitter can transmit up to 500 Mbps and the receiver can receive up to 125 Mbps, both through DuPont connectors without impedance matching.
Contents
Acknowledgement i
摘要 (Mandarin Abstract) iii
Abstract iv
Contents v
List of Figures ix
List of Tables xiv
Chapter 1: INTRODUCTION 1
1.1 Motivation 1
1.2 Overview 3
1.2.1 Automatic gain control circuits 3
1.2.2 High voltage integrated circuits 4
1.2.3 Backplane transceivers 5
1.3 Prior Arts 6
1.3.1 AGC, VGA, and PGA 6
1.3.2 High voltage designs using LDMOS 8
1.3.3 Charger operation 10
1.3.4 Transceiver systems 15
1.4 Overview of the Thesis 18
Chapter 2: AGC 21
2.1 Constant Settling Time AGC 21
2.2 A Linear-in-dB VGA 24
2.2.1 Approximation of exponential gain characteristics 24
2.2.2 VGA circuit with exponential gain characteristics 28
2.2.3 Measurement results of the VGA 33
2.3 An AGC with FROST and PDSSPD 39
2.3.1 Low power implementation of an AGC 39
2.3.2 Feed-forward output swing prediction (FROST) 40
2.2.3 Parallel-detect single-store peak detector (PDSSPD) 41
2.3.4 Proposed VGA 46
2.3.3 Implementation Results 47
2.4 1-dB Gain Step PGA 53
2.4.1 Implementation of a ZigBee receiver 53
2.4.2 Operational amplifier 54
2.4.3 Multiple feedback filter 55
2.3.4 Design of a programmable gain amplifier 57
2.5 Summary 63
Chapter 3: HV IC DESIGN 65
3.1 High Voltage IC Design Overview 65
3.3.1 0.25 μm BCD 60 V process overview 65
3.3.2 Voltage signal conversion 67
3.2 DIFC Amplifier 69
3.2.1 Small-signal design 69
3.2.2 Circuit level design 73
3.2.3 Simulation of a DIFC amplifier 76
3.3 60 V Charger Design 79
3.3.1 Charger architecture 79
3.3.2 Embodiment of the proposed charging solution 80
3.3.3 IC, CC, and CV charge modes 81
3.3.4 CV loop and diode-based CC clamp 83
3.3.5 CV loop and diode-connected load as CC clamp 80
3.3.6 Incremental current loop 88
3.3.7 Over-temperature protection 92
3.3.8 Antenna effect protection PAD 94
3.3.9 Implementation 96
3.4 Summary 101
Chapter 4: MORPACK TRANSCEIVERS 102
4.1 Fundamentals of Backplane transceivers 102
4.1.1 Uni-polar/differential signaling at high frequency 102
4.1.2 Skin effect 106
4.1.3 Eye diagram and inter-symbol interferences 108
4.2 CIC MorPack Transmitter Design 110
4.2.1 Pre-emphasis 110
4.2.2 A transmitter with pre-emphasis 111
4.2.3 Simulation of the transmitter with pre-emphasis 115
4.2.4 Measurement of the transmitter with pre-emphasis 116
4.3 CIC MorPack Receiver Design 118
4.3.1 Decision feedback equalizer 118
4.2.2 A DFE receiver 120
4.2.3 Simulation of the DFE receiver 123
4.2.4 Measurement of the DFE receiver 123
4.4 Summary 119
Chapter 5: CONCLUSION AND FUTURE WORK 126
References 129
[1] Moore’s Law. Wikipedia. [Online]. Available: “http://en.wikipedia.org/wiki/Moore%27s_law”
[2] B. Razavi, Design of analog CMOS integrated circuits. New York: McGraw-Hill, 2001.
[3] C.-H. Hsu, Y.-R. Lin, Y.-D. Tsai, Y.-C. Chen, and C.-C. Wang, “A Frequency-Shift Readout System for FPW Allergy Biosensor,” to be published in Proc. IEEE ICICDT, May 2011.
[4] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and design of analog integrated circuits, 4th ed. New Jersey: Wiley, 2001.
[5] P. E. Allen and D. R. Holberg, CMOS analog circuit design, 2nd ed. New York: Oxford, 2002.
[6] E. Sanchez-Sinencio and A. G. Andreou, Low-Voltage/Low-Power Integrated Circuits and Systems. New Jersey: Wiley, 1998.
[7] G. Smithson, Practical RF Printed Circuit Board Design, [Online]. Available: www.plextek.com/papers/gspcbdes.pdf
[8] D. M. Pozar, Microwave Engineering, 3rd ed. New Jersey: Wiley, 2005
[9] F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Networks: A Survey,” Computer Networks Elsevier Journal, vol. 38, no. 4, pp. 393-422, Mar. 2002.
[10] J. M. Khoury, “On the design of constant settling time automatic gain control circuits,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 45, no. 3, pp. 283-294, Mar. 1998.
[11] Power MOSFET. Wikipedia. [Online]. Available: “http://en.wikipedia.org/wiki/Power MOSFET”
[12] C.-H. Tsai, Class notes to power management integrated circuits
[13] Y. Tan, M. Kumar, J.K.O. Sin, J. Cai, and J. Lau, “A LDMOS technology compatible with CMOS and passive components for integrated RF power amplifiers,” IEEE Electron Device Letters, vol. 21, no. 2, pp. 82-84, Feb. 2000.
[14] High voltage and power management technology. Taiwan Semiconductor Manufacturing Company. [Online]. Available: “http://www.tsmc.com/english/newsEvents/dc brochure.htm”
[15] Process Introduction. Chip Implementation Center. [Online]. Available: http://www.cic.org.tw/cic v13/fab services/index.jsp?menu=intro
[16] Notes to tape-out related applications. Chip Implementation Center. pp. 20-22 [Online]. Available: “http://www2.cic.org.tw/cis/chipapply/doc/handout.pdf”
[17] Q.-H. Duong, Q. Le, C.-W. Kim, and S.-G. Lee, “A 95-dB linear low power Variable Gain Amplifier,” IEEE Trans. Circuits Syst. I, vol. 53, no. 8, pp. 1648-1657, Aug. 2006.
[18] Q.-H. Duong and S.-G. Lee, “CMOS exponential current-to-voltage circuit based on newly proposed approximation method,” in Proc. IEEE ISCAS, May 2004, pp. II.866-II.868.
[19] I.-H. Wang, and S.-I. Liu, “A 0.18-μm CMOS 1.25-Gbps Automatic Gain Control Amplifier,” IEEE Trans. Circuits Syst. II, vol. 55, no. 2, pp. 136-140, Feb. 2008.
[20] P. Huang, L. Y. Chiou, and C.-K. Wang, “A 3.3-V CMOS wideband exponential control variable gain amplifier,” in Proc. IEEE ISCAS, May 1998, pp. I-285 - I-288.
[21] J. Xiao, I. Mehr, and J. Silva-Martinez, “A high dynamic range CMOS Variable Gain Amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 292-301, Feb. 2007.
[22] O. Jeon, R. M. Fox, and B. A. Myers, “Analog AGC Circuitry for a CMOS WLAN receiver,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2291-2300, Oct. 2006.
[23] J. Baker, CMOS mixed-signal circuit design, 2nd Ed.. New Jersey: Wiley, 2009
[24] Q.-Z. Gu, RF system design of transceivers for wireless communications. Berlin: Springer, 2005, pp. 277
[25] X.-M. Wang, B.-Y. Chi, and Z.-H. Wang, “A low-power high data rate ASK IF receiver with a digital-control AGC loop,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 8, pp. 617-621, Aug. 2010.
[26] B.-Y. Chi, J. Yao, and Z.-H. Wang, “A fast-settling wideband-IF ASK baseband circuit for a wireless endoscope capsule,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 4, pp. 275-279, Apr. 2009.
[27] B. Rahmatian and S. Mirabbasi, “A low-power 75 dB digitally programmable CMOS variable-gain amplifier,” in Proc. Can. Conf. Elect. Comput. Eng., Apr. 2007, pp. 522-525.
[28] G.-W.Wu, W.-Z. Chen, and S.-H. Huang, “An 8 Gb/s Fast-Locked Automatic Gain Control for PAM receiver,” in Proc. IEEE Asian Solid-State Circuit Conf., Nov. 2009, pp. 173-176.
[29] W.-M. Wang, B.-Y. Chi, and Z.-H. Wang, “A low-power high data rate ASK IF receiver with a digital-control AGC loop,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 8, pp. 617-621, Aug. 2010.
[30] C.-C. Wang, C.-L. Lee, L.-P. Lin, and Y.-L. Tseng, “Wideband 70 dB CMOS digital variable gain amplifier design for DVB-T receivers AGC,” in Proc. IEEE ISCAS, May 2005, vol. 1, pp. 356-359.
[31] P.-I. Mak, S.-P. U and R. P. Martins, “On the design of a programmable-gain amplifier with built-in compact DC-offset cancellers for very low-voltage WLAN systems,” IEEE Trans. Circuits Syst. I, vol. 55, no. 2, pp. 496-509, Mar. 2008.
[32] C.-Yu Hsieh, C.-Yu Yang, and K.-H. Chen, “A charge-recycling buck-store and boost-restore (BSBR) technique with dual outputs for RGB LED backlight and flashlight module,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1914-1925, Aug. 2009.
[33] C.-Yu Hsieh and K.-H. Chen, “Boost DC-DC converter with fast reference tracking (FRT) and charge-recycling (CR) techniques for high-efficiency and low-cost LED driver,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2568-2580, Sept. 2009.
[34] C.-H. Lin, C.-Y. Hsieh, and K.-H. Chen, “A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging,” IEEE Trans. Circuits Syst. I, Regul. Papers, vol. 57, no. 2, pp. 506-517, Feb. 2010.
[35] J.-J. Chen, F.-C. Yang, C.-C. Lai, Y.-S. Hwang, and R.-G. Lee, “A high-efficiency multimode Li-ion battery charger with variable current source and controlling previous-stage supply voltage,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2469-2478, July 2009.
[36] M. Chen and G. A. Rincon-Mora, “Accurate, compact, and power-efficient Li-ion battery charger circuit,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1180-1184, Nov. 2006.
[37] Y.-S. Hwang, S.-C. Wang, F.-C. Yang, and J.-J. Chen, “New compact CMOS Li-Ion battery charger using charge-pump technique for portable applications,” IEEE Trans. Circuits Syst. I, Regul. Papers, vol. 54, no. 4, pp. 705-712, Apr. 2007.
[38] S.-H. Yang, J.-W. Liu, Y.-H. Wu, D.-S. Wang, and C.-C. Wang, “A high voltage battery charger with smooth charge mode transition in BCD process,” in Proc. IEEE ISCAS, May 2011, pp. 813-816.
[39] F. Yuan, CMOS Current-Mode Circuits for Data Communications. Berlin: Springer, 2007.
[40] N. Krishnapura, M. Barazande-Pour, Q. Chaudhry, J. Khoury, K. Lakshmikumar, and A. Aggarwal, “A 5Gb/s NRZ transceiver with adaptive equalization for backplane transmission” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 60–61.
[41] R. Yuen, M. Ierssel, A. Sheikholeslami, W. W. Walker, and H. Tamura, “A 5Gb/s transmitter with reflection cancellation for backplane transceivers” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2011, pp. 413-416.
[42] S.-Y. Kao and S.-I. Liu, “A 20-Gb/s Transmitter With Adaptive Preemphasis in 65-nm CMOS Technology” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 5, pp. 319-323, May. 2010.
[43] H. Wang, C.-C. Lee, A.-M. Lee, and J. Lee, “A 21-Gb/s 87-mW transceiver with FFE/DFE/linear equalizer in 65-nm CMOS technology,” in Proc. Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2009, pp. 50–51.
[44] Y. Tomita, M. Kibune, J. Ogawa, W. W. Walker, H. Tamura, and T. Kuroda, “A 10-Gb/s receiver with series equalizer and on-chip ISI monitor in 0.11-μm CMOS” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 986-993, Apr. 2005.
[45] C.-L. Hsieh and S.-I. Liu, “A 40 Gb/s decision feedback equalizer using back-gate feedback technique,” in Proc. Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2009, pp. 218–219.
[46] A. Emami-Neyestanak, A. Varzaghan, J. F. Bulzacchelli, A. Rylyakov, C.-K. K. Yang, and D. J. Friedman, “A 6.0-mW 10.0-Gb/s receiver with switched- capacitor summation DFE” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 889-896, Apr. 2007.
[47] S.-B. Park, J. E. Wilson, and M. Ismail, “Peak detectors for multistandard wireless receivers,” Circuits and Devices Magazine, pp. 6-9, June 2006.
[48] R. Hogervorst, J. P. Tero, and J. H. Huijsinge, “Compact CMOS constant-gm rail-to-rail input stage with gm-control by an electronic Zener diode,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 1035-1040, July. 1996.
[49] A. Liscidini, M. Tedeschi, and R. Castello, “A 2.4-GHz 3.6 mW 0.35 mm quadrature front-end RX for ZigBee and WPAN applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 370–371.
[50] W. Kluge, F. Poegel, H. Roller, M. Lange, T. Ferchland, L. Dathe, and D. Eggert, “A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBee applications,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2767–2775, Dec. 2006.
[51] A. Balankutty, S.-A. Yu, Y.-P. Feng, and P. R. Kinget, “A 0.6-V Zero-IF/Low-IF receiver with integrated Fractional-N synthesizer for 2.4-GHz ISM-band applications,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 538–553, Mar. 2010.
[52] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. H. Huijsing, “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1994, pp. 244–245.
[53] T. Kuglstadt, OP Amps for Everyone, Texas: Texas Instruments, 2008.
[54] K. Su, Analog Filters, 2nd Ed., New York: Kluwer Academic, 2003.
[55] B. K. Thandri and J. Silva-Martinez, “A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors,” IEEE J. Solid-State Circuits, vol. 38, no. 22, pp. 237-243, Feb. 2003.
[56] X. Peng and W. Sansen, “Transconductance with capacitances feedback compensation for multistage amplifiers,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1514-1520, Jul. 2005.
[57] H. Lee and P. K. T. Mok, “Advances in active-feedback frequency compensation with power optimization and transient improvement,” IEEE Trans. Circuits Syst. I, Regul. Papers, vol. 51, no. 9, pp. 1690- 1696, Sep. 2004.
[58] A. Pugliese, F. A. Amoroso, G. Cappuccino, and G. Cocorullo, “Settling time optimization for three-stage CMOS amplifier topologies,” IEEE Trans. Circuits Syst. I, Regul. Papers, vol. 56, no. 12, pp. 2569-2581, Sep. 2009.
[59] D. Andrea, Battery management systems for large Lithium-ion battery packs. Massachusetts: Artec House, 2010
[60] T. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli, SPICE3 Version 3f3 User’s Manual, University of California, Berkeley, CA,
1993. [Online]. Available: “http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/”
[61] W. Sansen, Analog design essentials. Berlin: Springer, 2006, pp. 381
[62] W.-Y. Chen and M.-D. Ker, “Circuit and layout co-design for ESD protection in Bipolar-CMOS-DMOS (BCD) high-voltage process,” IEEE Trans. Circuits Syst. I, Regul. Papers, vol. 57, no. 5, pp. 1039-1047, May 2010.
[63] K. Makinwa and M.F. Snoeij, “A CMOS temperature-to-frequency converter with an inaccuracy of less than ± 0.5◦C (3σ) from -40◦C to 105◦C,” IEEE J. Solid-State Circuits,, vol. 41, no. 12, pp. 2992-2997, Dec. 2006.
[64] K. Souri, M. Kashmiri, and K. Makinwa, “A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of ± 0.25◦C (3σ) from -40◦C to 125◦C,” in IEEE ISSCC Dig., Feb. 2010, pp. 310-311.
[65] P. Chen, C.-C. Chen, Y.-H. Peng, K.-M. Wang, and Y.-S. Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3_ inaccuracy of -0.4◦C to +0.6◦C over a 0◦C to 90◦C range,” IEEE J. Solid-State Circuits,, vol. 45, no. 3, pp. 600-609, Mar. 2010.
[66] J. Baker, CMOS circuit design, layout, and simulation, 2nd Ed.. New Jersey: Wiley, 2008, pp. 914
[67] T. Watanabe and Y. Yoshida, “Dielectric breakdown of gate insulator due to reactive etching,” Solid State Technology, vol. 26, no. 4, pp. 263, Apr. 1984.
[68] C. Gabriel and J. McVittie, “How plasma etching damages thin gate oxides,” Solid State Technology, vol. 34, no. 6, pp. 81, Apr. 1992.
[69] S. Fang and J. McVittie, “Thin-oxide damage from gate charging during plasma processing,” IEEE Electron Device Letters, vol. 13, no. 5, pp. 288, Feb. 1992.
[70] H.-C. Shin and C.-M. Hu, “Thin gate oxide damage due to plasma processing,” Semicond. Sci. Technol., vol. 40, no. 11, pp. 463-473, Nov. 1996.
[71] Antenna effect, Wikipedia, [Online]. Available: “http://en.wikipedia.org/wiki/Antenna effect”
[72] H.-C. Shin, C.-C. King, and C.-M. Hu, “Thin oxide damage by plasma etching and ashing processes,” Proc. IEEE Int’l Reliability Phys. Symp., April 1992, pp. 37.
[73] J. Liobe. The antenna effect: problem and solutions. Technion, Israel, 2004. [Online]. Available: “http://webee.technion.ac.il/courses/048864/rochester/spring%202004%20presentations/465 antenna%20effects.pdf”
[74] Z. Chen and I. Koren, “Layer Reassignment for Antenna Effect Minimization in 3-Layer Channel Routing,” Proc. IEEE Int’l Symp. on Defect and Fault Tolerance in VLSI Systems, Nov 1996, pp. 77-85.
[75] K. Martin, Digital Integrated Circuit Design, London: Oxford University Press, 1999.
[76] A. M. Niknejad, Electromagnetics for high-speed analog and digital communication circuits, New York: Cambridge University Press, 2007.
[77] J. F. Buckwalter and A. Hajimiri, “Cancellation of crosstalk-induced jitter” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 621–632, Mar. 2006.
[78] J. G. Proakis, Digital communications, 5th ed., New York: McGraw-Hill, 2008.
[79] N. H. E. Weste and D. M. Harris, CMOS VLSI design: a circuits and systems perspective, 4th ed., Boston: Addison-Wesley, 2011.
[80] S. Haykin, Communication systems, 4th ed., New Jersey: Wiley, 2000.
[81] E. M. Cherry and D. E. Hooper, “The design of wide-band transistor feedback amplifiers,” Proc. IEEE, vol. 110, pp. 375–389, Feb. 1963.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔