(3.230.173.249) 您好!臺灣時間:2021/04/21 05:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉筱君
研究生(外文):Hsiao-chun Yeh
論文名稱:結合靶材蝕刻形狀調控及效能提升之直流磁控濺鍍機修正架構
論文名稱(外文):Target Erosion Pattern Control and Performance Enhancement of DC Magnetron Sputtering Systems by Structural Adjustment
指導教授:劉承宗劉承宗引用關係
指導教授(外文):Cheng-Tsung Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:74
中文關鍵詞:蝕刻軌跡濺鍍率靶材基材磁控濺鍍機薄膜
外文關鍵詞:target erosion patterns.DC Magnetron Sputtering SystemSputteringsubstratestarget
相關次數:
  • 被引用被引用:1
  • 點閱點閱:315
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
在薄膜濺鍍的過程當中,系統操作者所關心的乃是濺鍍率、靶材的使用率以及基材塗佈的均勻度,而這些皆會受到環境中的電磁場、腔體溫度以及壓力等諸多變數的影響。其中靶材為製作薄膜時最重要的原料,在薄膜製作的過程中,靶材會受到離子的撞擊進而使靶材原子濺射至基材形成薄膜。因此當靶材的某一區域被離子長時間的撞擊後,靶材原料會逐漸變薄,而一旦被擊穿後,便無法再使用。當整塊靶材被擊穿時,其原料的使用率一般來說只使用了大概3-5成左右,造成相當地浪費,及相對的成本增加。所以本論文是希望在既有的磁控濺鍍機架構下,透過適當的結構調整,以達到提升靶材的使用率以及濺鍍率的目標。經由論文中的探討分析以及三維系統運動方程式模擬電子活動軌跡的結果得知,透過額外地加入鐵環以及補償永磁,並利用田口法在結構上做一個完整的設計與規劃,即可適當地改變磁控濺鍍機架構中腔體內磁場的分布。如此即可使得靶材表面附近的電子運動軌跡受到控制,即能間接調控靶材蝕刻軌跡以及轟擊靶材的離子數量,不但能使靶材達到更有效的利用也能使濺鍍率提升,如期地達到本研究的目的。
In the process of sputtering, what a system operator concerns are the sputtering rate, target utilization, and substrates uniformity. All of them are influenced by variables such as electromagnetic environment, chamber temperature, and pressure. In thin film manufacturing, targets bombarded by ions will sputter atoms to the substrates in order to make thin films; therefore, when a certain target zone is extensively bombarded by ions, target surface will become thinner. In general, when certain part of the target is penetrated, it is no longer usable while utilization rate only from 30 to 50 percent. It causes considerable waste and relatively higher costs. As a result, the objective of this study is to enhance target utilization and the sputtering rate through appropriate adjustment in the structure of the existing DC Magnetron Sputtering System (MSS). Since, the magnetic field distribution in the chamber will be appropriately adjusted inside the DC MSS with extra iron annulus and active compensation magnetizations being added. However, in order to get the better structural refinement of DC MSS it needs a thorough design and management based on Taguchi Method. Then, based on such structural adjustment, electron trajectories on top surface of targets can be conveniently controlled, and target erosion patterns and the number of ions bombarding the target will be indirectly controlled. It will, as a result, achieve the objective of this study by enhancing not only the target utilization efficiency but the sputtering rate.
論文審定書……………………………………………………………………………...i
誌謝……………………………………………………………………………………..ii
中文摘要………………………………………………………….……………………iii
英文摘要………………………………………..……………………………………...iv
圖目錄….……………………………………………………………………………...vii
表目錄………………………………………………………………………………….ix
第一章 緒論 .......................................................................................................... 1
1.1 前言 .............................................................................................. 1
1.2 研究背景與動機 .......................................................................... 4
1.3 研究重點 ...................................................................................... 7
第二章 濺鍍機系統模型之介紹 ........................................................................ 10
2.1 濺鍍原理簡介 ............................................................................ 10
2.2 腔體內之粒子能量與電漿環境 ................................................ 11
2.3 直流磁控濺鍍機 ........................................................................ 13
2.4 有限元素法分析介紹 ................................................................ 16
2.5 腔體內電子之活動情形與推導 ................................................ 22
第三章 靶材蝕刻探討與分析 ............................................................................ 25
3.1 靶材之蝕刻過程 ........................................................................ 25
3.2 電磁場變化改變靶材蝕刻情形 ................................................ 27
3.3 探討蝕刻深度與電子穩定度 .................................................... 29
第四章 靶材蝕刻軌跡之調控 ............................................................................ 32
4.1 鐵環形狀對靶材轉角蝕刻的影響 ............................................ 32
4.2 鐵環安置位置對靶材蝕刻的影響 ............................................ 37
4.3 線圈對靶材蝕刻之影響 ............................................................ 40
第五章 直流磁控濺鍍機結合靶材蝕刻與濺鍍率之改善 ................................ 43
5.1 田口法簡介 ................................................................................ 44
5.2 直流磁控濺鍍機之設計 ............................................................ 46
5.3 信號雜訊比 ................................................................................ 48
5.4 變異數分析 ................................................................................ 57
第六章 討論與結論 ............................................................................................ 61
參考文獻 ..................................................................................................................... 62
作者自述 ..................................................................................................................... 64
[1] 理財網財經知識庫/2010年半導體產業展望-半導體產業復甦在望,企業資本支出大幅擴充,http://www.moneydj.com/kmdj/report/reportviewer.aspx?a=0f1abdc6-2821 -42cc-afa6-5ee94a1e7ef2,2011/05/25。
[2] 經濟部投資業務處/平面顯示器產業分析及投資機會,http://investintaiwan.nat.gov.tw/doc/industry/17FPD_Industry_cht.pdf,2011/05/25。
[3] IT IS產業智網/PVD、CVD 真空鍍膜設備專題研究,http://www.itis.org.tw/pubinfo -detail-free.screen?f=&pubid=922,2011/05/25。
[4] 教育部高工進修網站/機械製造科/精密製造學/第八章薄膜沉積, http://elearning.stut.edu.tw/m_facture/ch8.htm,2009/06/15。
[5] Tectra/Products/Sputter-Coater, http://www.tectra.de/spuco.htm, 2009/05/ 25.
[6] P.J. Kelly and R.D. Arnell, “Magnetron sputtering: A review of recent developments and applications,” Vacuum, vol. 56, no. 2, pp. 159-175, Feb. 2000.
[7] R. Kukla, “Magnetron sputtering on large scale substrates: An overview on the state of the art,” Surf. and Coatings Tech., vol. 93, no. 1, pp. 1-6 , Aug. 1997.
[8] D. A. Glocker and S. I. Shah, Handbook of Thin Film Process Technology, Inst. of Physics, Bristol, U.K., 1995.
[9] Q. Qiu, Q. Li, J. Su, Y. Jiao, and J. Finley, “Influence of operating parameters on target erosion of rectangular planar DC magnetron,” IEEE Trans. Plas. Sci., vol. 36, no. 4, pp. 1899-1906, Aug. 2008.
[10] T. Sheridan, M. J. Goechker, and J. Goree, “Model of energetic electron transport in magnetron discharges,” J. Vac. Sci. Tech. A, vol. 8, no. 1, pp. 30-37, Jan. 1990.
[11] D. S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapman and Hall, New York, U.S.A., 1991.
[12] B. Chapman, Glow Discharge Process, John Wiely and Sons, New York, U.S.A., 1982.
[13] W. B. Robert, M. H. Peter, and T. H. Murrary, Thin Film Technology, Van Nostrand Reinhold, New York, U.S.A., 1980.
[14] J. L. Vossen and W. Kern, Thin Film Processes II, Academic Press, Inc., Boston, U.S.A., 1991.
[15] 晨怡熱管/資料積累/輔助知識/真空鍍膜技術及設備兩百年發展歷史http://china-heatpipe.net/heatpipe04/05/2007-6-26/76267450656.htm,2007/ 06/26。
[16] 陳俊豪譯,有限元素法導論,科技圖書股份有限公司,台北,台灣,1997。
[17] 王至勤譯,有限元素法,曉園出版社,台北,台灣,1985。
[18] The Magsoft Corporation, Flux3D User’s Guide, version 10.3, Ballston Spa, New York, U.S.A., 2007.
[19] E. Shidoji, M. Nemoto, T. Nomura, and Y. Yoshikawa, “Three-dimensional simulation of target erosion in dc magnetron sputtering,” Japan. J. Appl. Phys., vol. 33, pp. 4281-4284, 1994.
[20] E. Shidoji, M. Nemoto, and T. Nomura, “An anomalous erosion of a rectangular magnetron system ,” J. Vac. Sci. Tech. A., vol. 18, no. 6, pp. 2858-2863, Nov. 2000.
[21] Q. Qiu, Q. Li, J. Su, Y. Jiao, and J. Finely, “Simulation to improve the magnetic field in the straight section of the rectangular planar DC magnetron,” Vacuum, vol. 82, pp. 657-263, Feb. 2008.
[22] S. Ido, M. Kashiwagi, and M. Takahashi, “Computational studies of plasma generation and control in a magnetron sputtering system,” Japan. J. Appl. Phys., vol. 38, pp. 4450-4454, 1999.
[23] The MathWorks, Inc., MATLAB R2008b, Natick, MA, U.S.A., 2008.
[24] C.-T. Liu, M.-C. Lai, C.-C. Hwang, C.-H. Tu, L.-Y. Liu, and Y.-W. Hsu, “Enhancements of substrate deposition rate and target erosion profile in a dc magnetron sputtering system,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4391-4394, Oct. 2009.
[25] C.-T. Liu, M.-C. Lai, C.-C. Hwang, “Design assessments of a refined DC magnetron sputter with multiple magnetron arrangements,” IEEE Trans. Magn., vol. 46, no. 6, pp. 1614-1617, June 2010.
[26] 鄭博文、葉育典與許家豐,“應用田口實驗設計法於基因演算法參數設定-以流程式排程為例”,科技與管理學術研討會論文集,pp.603-610,台北,11月,2004。
[27] M. S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, New York, U.S.A., 1989.
[28] 蘇朝墩,品質工程,中華民國品質學會,台北,台灣,2002。
[29] P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, McGraw-Hill, New York, U.S.A., 1996.
[30] I. Ivanov, P. Kazansky, L. Hultman, I. Petrov, and J. E. Sundgren, “Influence of an external axial magnetic field on the plasma characteristics and deposition conditions during direct current planar magnetron sputtering,” J. Vac. Sci. Tech. A, vol. 12, no. 2, pp. 314-320, Mar. 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔