(18.206.177.17) 您好!臺灣時間:2021/04/23 04:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李家銘
研究生(外文):Jia-Ming Li
論文名稱:晶圓級雙模態薄膜體聲波濾波器之設計與製作
論文名稱(外文):Design and Fabrication of Wafer Level Dual-Mode Thin Film Bulk Acoustic Filters
指導教授:陳英忠
指導教授(外文):Ying-chung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:86
中文關鍵詞:雙模態濾波器體聲波階梯式濾波器晶圓氧化鋅
外文關鍵詞:Zinc oxideDual-mode filtersBulk acoustic waveWaferLadder-type filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究以雙模態薄膜體聲波共振器為結構以製作晶圓級階梯式濾波器,在射頻磁控濺鍍系統中,採以室溫兩階段沉積技術,結合離軸方式以成長高品質之氧化鋅薄膜;並討論離軸程度不同時之氧化鋅薄膜,其品質之差異。經由SEM和XRD分析得知,當離軸35 mm時,所成長的氧化鋅薄膜具有最佳的物理特性。
濾波器元件依傾斜角度之不同,激發出具有單模態或雙模態之濾波器元件。在離軸35 mm時,氧化鋅薄膜呈現4.4°及5°之傾斜角度,激發出優選的雙模態濾波器。此雙模態濾波器的縱波與剪波之中心頻率比值為2.2,此結果顯示出其剪波訊號可應用於EGSM-900之接收端(Rx),而其縱波則可應用於WCDMA之接收端(Rx)。
在特性優化方面,將濾波器經過CTA 400 ℃退火處理,其濾波器之縱波插入損失由未退火處理前的-5.77 dB提升到-4.85 dB,頻帶抑制從13.57 dB降低到12.65 dB,頻寬則由69.69 MHz提升到73.12 MHz。另一方面,濾波器之剪波插入損失從-9.94 dB提升到-8.21 dB,頻帶抑制從13.74 dB降低到13 dB,頻寬則由28.13 MHz縮小到28.12 MHz。
This study describes the design and fabrication of dual-mode film bulk acoustic resonator (TFBAR) devices to construct wafer level T-ladder type filters. Reactive radio-frequency (RF) magnetron sputtering method was used to deposit c-axis- tilted ZnO piezoelectric thin films. The piezoelectric ZnO thin films were deposited by a two-step method at room temperature with off-axis. In this investigation, off-axis distance was varied to determine the optimal growth parameters of the tilted piezoelectric thin film. The SEM and XRD analysis reveal that ZnO thin films deposited at off-axis distances of 35 mm yielded a highly textured and sufficiently-tilted ZnO piezoelectric layer for dual-mode TFBAR.
Additionally, the ZnO piezoelectric layer with off-axis distances of 35 mm exhibited enhanced competitive growth, and had a c-axis-tilted angle of 5°. To explore the relationship between the c-axis-tilted angle and the dual-mode resonance frequency responses (fL and fS) of TFBAR, two TFBAR devices were fabricated with ZnO c-axis tilted at 4.4° and 5°, respectively. The TFBAR device with 5°-tilted ZnO layer exists shear and longitudinal resonant modes. The center-frequency of longitudinal resonant mode is 2.2 times that of the shear resonant mode. The longitudinal mode is suitable for designing as a communication receiver (Rx) device at WCDMA band. On the other hand, the shear mode of TFBAR is suitable for EGSM-900 band.
To optimize the characteristics, the filter was annealed by CTA treatment in 400 ℃. For the frequency responses of the longitudinal wave, the insertion loss was upgraded from -5.77 dB without annealing to -4.85 dB as annealed, the band rejection was reduced from 13.57 dB to 12.65 dB, the bandwidth was broaden from 69.69 MHz to 73.12 MHz. On the other hand, for the frequency responses of the shear wave, the insertion loss was upgraded from -9.94 dB to -8.21 dB, the band rejection was reduced from 13.74 dB to 13 dB, the bandwidth was decreased from 28.13 MHz to 28.12 MHz.
論文審定書 ....................................................................................................................... i
誌謝 ................................................................................................................................. ii
摘要 ................................................................................................................................ iii
Abstract ............................................................................................................................ iv
目錄 .............................................................................................................................. … v
圖次 ............................................................................................................................... viii
表次 ................................................................................................................................ xi
第 一 章 前言 ........................................................................................................... 1
1-1 研究背景與動機 ................................................................................................. 1
1-2 薄膜體聲波濾波器簡介 ..................................................................................... 2
1-3 研究目的 ............................................................................................................. 5
第 二 章 理論分析 ................................................................................................... 6
2-1 壓電效應 ............................................................................................................. 6
2-2 壓電材料 ........................................................................................................... 6
2-3 Mason 等效電路模型 ....................................................................................... 8
2-4 體聲波的傳遞模式 ........................................................................................... 10
2-5 反應性射頻磁控濺鍍原理 ............................................................................... 11
2-6 薄膜沉積原理 ................................................................................................... 11
2-7 薄膜體聲波共振器 ........................................................................................... 12
2-8 薄膜體聲波濾波器 ........................................................................................... 12
2-8-1 T 型階梯式濾波器 .................................................................................... 12
第 三 章 實驗步驟 ................................................................................................. 14
3-1 直流濺鍍系統沉積電極薄膜 ........................................................................... 14
3-2 射頻濺鍍系統沉積氧化鋅薄膜 ....................................................................... 15
3-3 薄膜特性分析 ................................................................................................... 15
3-3-1 X 光繞射(X-Ray Diffraction,XRD)分析 .................................................. 15
3-3-2 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)分析 .............. 16
3-3-3 原子力顯微鏡(Atomic Force Microscopy,AFM)分析 ............................. 16
3-4 頻率調變 ........................................................................................................... 16
3-5 TFBAR 濾波器製作流程(1) .......................................................................... 16
3-5-1 RCA 清洗基板 .......................................................................................... 17
3-5-2 沉積Pad Oxide ......................................................................................... 17
3-5-3 SiNx 薄膜沉積 ........................................................................................... 18
3-5-4 背部蝕刻窗口與底電極之製作 ............................................................... 18
3-5-5 壓電層之製作 ........................................................................................... 18
3-5-6 頂電極與調變頻寬之製作 ....................................................................... 18
3-5-7 背部空腔濕蝕刻 ....................................................................................... 18
3-6 TFBAR 濾波器製作流程(2) .......................................................................... 19
3-6-1 底電極之製作 ........................................................................................... 19
3-6-2 一階段濕式蝕刻背部空腔 ....................................................................... 19
3-6-3 壓電層之製作 ........................................................................................... 19
3-6-4 頂電極與調變頻寬之製作 ....................................................................... 19
3-6-5 二階段乾式蝕刻背部空腔 ....................................................................... 20
3-7 CTA 熱處理 ...................................................................................................... 20
3-8 TFBAR 元件頻率響應量測 ............................................................................. 21
第 四 章 結果與討論 ............................................................................................. 22
4-1 氧化鋅壓電薄膜與白金電極之物性分析 ....................................................... 22
4-1-1 氧化鋅薄膜之掃描式電子顯微鏡分析 ................................................... 22
4-1-2 白金電極之原子力顯微鏡分析 ............................................................... 23
4-1-3 氧化鋅薄膜之X 光繞射分析 .................................................................. 23
4-2 製程流程(1)與流程(2)之蝕刻 ......................................................................... 23
4-3 T 型濾波器頻率響應分析 ............................................................................... 24
4-3-1 離軸位置不同之元件的單、雙模態頻率響應分析 ............................... 24
4-3-2 離軸位置不同之元件的共振頻率響應分析 ........................................... 24
4-3-3 不同元件之ZnO 薄膜顏色相同區域之共振頻率分析 .......................... 25
4-3-4 離軸位置不同之元件的插入損失分析 ................................................... 25
4-3-5 離軸位置不同之元件的剪波與縱波模態分析 ....................................... 25
4-3-6 離軸位置不同之元件可應用之頻帶分析 ............................................... 26
4-4 濾波器元件經CTA 退火之特性探討 ............................................................. 26
第 五 章 結論 ......................................................................................................... 27
參考文獻 ......................................................................................................................... 28
[1]G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch circuits”, IEEE Microwave Magazine, vol.2, pp.59-71, Dec 2001.
[2]H. A. C. Tilmans, W. D. Raedt and E. Beyne, “MEMS for wireless communications: from RF-MEMS components to RF-MEMS-SiP”, J. Micromech. Microeng., pp.139-163, 2003.
[3]K. Nakamura, Y. Ohashi and H. Shimizu, “UHF Bulk-Acoustic-Wave Filters Utilizing Thin ZnO/SiO2-Diaphragms on Silicon”, Jpn. J. Appl. Phys., vol.25, pp.371-375, 1986.
[4]Y. Yoshino, K. Inoue, M. Takeuchi and K. Ohwada,“Effects of interface micro structure in crystallization of ZnO thin films prepared by radio frequency sputtering”, Vacuum, vol.51, pp.601-605, Dec 1998.
[5]B. P. Otis and M. J. Rabaey, “A 300 um 1.9 GHz CMOS oscillator utilizing micromachined resonators”, IEEE Journal of solid-state circuits, vol.38, No.7, pp.1271-1274, July 2003.
[6]P. Bradley, R. Ruby, J. D. Larson III, Y. Oshmyansky and D. Figueredo, “A Film Bulk Acoustic Resonator Duplexer for USPCS Handset Applications”, IEEE MTT-S Digest, pp.367-370, 2001.
[7]K. W. Tay, “Performance Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators”, Jpn. J. Appl. Phys., vol.43, No.8A, pp.5510-5515, 2004.
[8]R. C. Ruby, P. Bradley and Y. Oshmyansky, “Thin film bulk acoustic resonators for wireless applications”, IEEE Ultrason. Symp, pp.813-821, 2001.
[9]D. H. Kim, M. Yim, D. Chai and G.Yoon, “Improvements of resonance characteristics due to thermal annealing of Bragg reflectors in ZnO-based FBAR devices”, Electronics Letters, vol.39, No.13, pp.962-964, June 2003.
[10]J. Larson, “Power Handling and Temperature Coefficient Studies in FBAR Duplexers for the 1900 MHz PCS Band”, IEEE Ultrasonics Symposium, vol.1, pp.869-874, 2000.
[11]M. Hara, J. Kuypers and M. Esashi, “Surface micromachined AlN thinfilm 2 GHz resonator for CMOS integration”, Sensors and Actuators, A117, pp.211-216, 2005.
[12]R. Aigner, J. Ella, H. -J. Timme, L. Elbrecht, W. Nessler and S.Marksteiner, “Advancement of MEMS into RF-Filter Applications”, IEEEIEDM, pp.897-900, 2000.
[13]R. B. Stokes and J. D. Crawfold, “X-Band Thin-Film Acoustic Filter on GaAs”, IEEE Tans. Microwave Theory Tech., vol.41, pp.1075-1080, July 1993.
[14]V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz and R. A. Moore, “Film Bulk Acoustic Wave Resonator and Filter Technology”, IEEE Trans. MTT-S Dig., pp.153-155, 1992.
[15]M. Schmid, E. Benes, W. Burger and V.Kravchenko, “Motional Capacitance of:ayered Piezoelectric Thickness-mode Resonators”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.38, pp.199-206, May 1991.
[16]K. M. Lakin, “Thin film resonators and filters”, IEEE Ultrasonics SympiumProc., vol.2, pp.895-906, 1999.
[17]D. H. Kim, M. Yim, D. Chai, J. S. Park and G. Yoon, “Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Jpn. J. Appl. Phys., vol.43, No.4A, pp.1545–1550, 2004.
[18]R. C. Lin, K. S. Kao and Y. C. Chen, “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators”, Appl. Phys. A, vol.89, pp.475-479, 2007.
[19]Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition”, Thin Solid Films, vol.402, pp.302-306, 2002.
[20]J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y. Zheng, “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD”, J. Crystal Growth, vol.243, pp.151-156, 2002.
[21]K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique”, Mater.Res. Bull., vol.35, pp.39-46, 2000.
[22]X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B. Wang and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films”, Mater. Lett., vol.75, pp.4655-4659, 2003.
[23]W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films”, Mater. Lett., vol.55, pp.67-72, 2002.
[24]Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation”, Appl. Surf. Sci., vol.142, pp.233-236, 1999.
[25]S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Effects of post-annealing treatment on the light emission properties of ZnO thin films on Si”, Opt. Mater., vol.17, pp.327-330, 2001.
[26]Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay and H. H. Hng, “Evolution of visible luminescence in ZnO by thermal oxidation of zinc films”, Chem. Phys. Lett., vol.375, pp.113-118, 2003.
[27]D. G. Baik and S. M. Cho, “Application of sol-gel films for ZnO/n-Si junction solar cells”, Thin Solid films, vol.354, pp.227-231, 1999.
[28]K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO”, J. Crystal Growth, vol.209, pp.522-525, 2000.
[29]J. B. Lee, J. P. Jung, M. H. Lee and J. S. Park, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN based FBARs”, Thin Solid Films, vol.447–448, pp.610-614, 2004.
[30]M. Akiyama, K. Nagao, N. Ueno and H. Tateyama, “Influence of metal electrodes on crystal orientation of aluminum nitride thin films”, Journal of Vacuum Science and Technology, vol.74, pp.699-703,2004.
[31]H. C. Lee, J. Y. Park, K. H. Lee and J. U. Bu, “Preparation of highly textured Mo and AlN films using a Ti seed layer for integrated high-Q film bulk acoustic resonators”, Journal of Vacuum Science and Technology, vol.22, pp.1127-1133, 2004.
[32]R. C. Lin, K. S. Kao, C. C. Cheng and Y. C. Chen, “Deposition and structural properties of R.F. magnetron sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device”, Thin Solid Film, vol.516, pp.5262-5265, 2008.
[33]R. Levy and S.B. Cohn, “A History of Microwave Filter Research, Design, and Development”, IEEE Trans., vol.32, pp.1055-1067, Sep 1984.
[34]K. M. Lakin and J. S. Wang, “Acoustic bulk wave composite resonators”, Appl. Phys. Lett., vol.38, pp.125-127, 1981.
[35]K. M. Lakin, “Thin film resonators and filters”, IEEE Ultrasonics Sympium Proc., vol.2, pp.895-906, 1999.
[36]S. G. Zotova, R. Kaltofen and T. Sebald, “DC reactive magnetron sputter deposition of (111) textured TiN films — influence of nitrogen flow and discharge power on the texture formation”, Surf. Coat. Technol., vol.127, pp.144-154, May 2002.
[37]C. V. Thompson, “Structure evolution during processing of polycrystalline films”,Annu. Rev. Mater. Sci., vol.30, pp.159-190, 2000.
[38]R. C. Lin, K. S. Kao and Y. C. Chen, “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators”, Appl. Phys. A, vol.89, pp.475-479, 2007.
[39]Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang and R. Whatmore, “Thin Film Bulk Acoustic Resonators and Filters Using ZnO and Lead Zirconium Titanate Thin Films”, IEEE Transactions on microwave theory and techniques, vol.49, no.4, pp.769-778, April 2001.
[40]T. Nishihara, T. Yokoyama, T. Miyashita and Y. Satoh, “High Performance and Miniature Thin Film Bulk Acoustic Wave Filters for 5 GHz”, IEEE Ultrasonics Symposium, vol.1, pp.969-972, 2002.
[41]鄒一德,“透明氧化鋅之薄膜電晶體技術開發研究”,國立交通大學 光電工程系 顯示科技研究所碩士論文,(2006)。
[42]王瑞琪,“新穎氧化鋅奈米材料的成長與光電性質”,國立成功大學 材料科學及工程研究所博士論文,(2006)。
[43]H. P. Loebl, C. Metzmacher, R. F. Milsom, P. Lok, F.van Straten and A. Tuinhout, “RF Bulk Acoustic Wave Resonator and Filters”, Journal of Electrocernmics, vol. 12, pp. 109-118, 2004.
[44]V. M. Ristic, ”Principles of Acoustic Devices”, 新智,(1984) 3
[45]M. Yim, D. H. Kim, D. Chai and G. Yoon, “Effect of Thermal Annealing of W/SiO2 Multilayer Bragg Reflectors on Resonance Characteristics of Film Bulk Acoustic Resonator Devices with Cobalt Electrode”, J. Vac. Sci. Technol. A 22(3), pp. 465-471, May/Jun 2004.
[46]J. Bjurstrom, D. Rosen, I. Katardjiev, V. M. Yanchev and I. Petrov, “Dependence of the Electromechanical Coupling on the Degree of Orientation of c-Textured Thin AlN Films”, Trans. on IEEE Ultrason., Ferroelectr. Freq. Contr., vol. 51, pp. 1347-1353, No.10, 2004.
[47]Martin, M. –E. Jan, S. Rey-Mermet, D. Su and P. Muralt, “Shear Mode Coupling and Tilted Growth of AlN Thin Films in BAW Resonator,” IEEE Ultrason. Symp., vol. 53, pp. 333-336, 2005.
[48]M. Link, M. Schreiter, J. Weber, D. Pitzer, R. Primig, M. B. Assouar and O. Elmazria, “C-axis Inclined ZnO Films Deposited by Reactive sputtering using an additional blind for shear BAW devices”, IEEE Ultrason. Symp., pp. 202-205, 2005.
[49]Y. E. Lee, S. G. Kim, Y. J. Kim and H. J. Kim, “Effect of Oblique Sputtering on Microstructural Modification of ZnO Thin Films”, J. Vac. Sci. Technol. A 15(3), pp. 1194-1199, 1997.
[50]M. Link, M. Schreiter, J. Weber, R. Gabl, D. Pitzer, R. Primig and W. Wersing, “C-axis Inclined ZnOa Films Shear-wave Transducers Deposited by Reactive Sputtering Using an Additional Blind”, J. Vac. Sci. Technol. A 24(2), pp. 218-222, 2006.
[51]徐茂協,“以Mo/SiO2為布拉格反射層製作固態微型諧振器與濾波器之研究”,國立中山大學 電機工程學系碩士論文,(2005)。
[52]H. Zhang and E. S. Kim, “Micromachined Acoustic Resonant Mass Sensor”, IEEE Microelectromechanical Systems, vol.14, pp.699-706, 2005.
[53]L. A. Zepeda-Ruiz and D. J. Srolovitz, “Effects of ion beams on the early stages of MgO growth”, J. Appl. Phys., vol.91, pp.10169-10181, 2002.
[54]C. P. Wang, K. B. Do, M. R. Beasley, T. H. Geballe and R. H.Hammond, “Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia”, Appl. Phys. Lett., vol.71, pp.2955-2958, 1997.
[55]T. Ohwaki, T. Yoshida, S. Hashimoto, H. Hosokawa, Y. Mitsushima and Y. Taga, “Preferred Orientation in Ti Films Sputter-Deposited on SiO2 Glass: The Role of Water Chemisorption on the Substrate”, Jpn. J. Appl. Phys., vol.36, pp.L154-L157, 1997.
[56]C. Vale, J. Rosenbaum, S. Horwitz, S. Krishnaswamy and R. Moore, “FBAR filters at GHz frequencies”, Ann. Symp. Freq. Control Proc., vol.45, pp.332-336, 1990.
[57]E. J. Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol.140, pp.696-701, 1991.
[58]王宏灼,“反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所碩士論文,1995。
[59]蔡家龍,“製程參數對濺射沉積氮化鋁薄膜之影響”,國立中山大學電機工程研究所碩士論文,2000。
[60]歐天凡,“沉積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響”,國立中山大學電機工程研究所碩士論文,2004。
[61]林宗賢,“微小型體聲波元件之設計與製造”,國立清華大學動力機械工程研究所博士論文,2006。
[62]R. C. Lin, Y. C. Chen, C. C. Cheng and K. S. Kao, “Highly-Sensitive Mass Sensor using Film Bulk Acoustic Resonator”, Sensors and Actuators A, vol.147, pp.425-429, 2008.
[63]I. Zubel and M. Kramkowska, “The effect of alcohol additives on etchingcharacteristics in KOH solutions”, Sensors and Actuators A, vol.115, pp.549-556, 2004.
[64]張瑋才,“以薄膜體聲波共振器製作質量感測器之研究”,國立中山大學電機工程研究所碩士論文,2007。
[65]Q. Lifeng, C. Qingming, C. Hongbin and W. Qing-Ming, “Analytical studyof dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol.57, pp.1840-1853,2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔