|
[1] O. Castillo and P. Melin, “A new approach for plant monitoring using type-2 fuzzy logic and fractal theory,” International Journal of General Systems, 33(2-3):305.319, 2004. [2] O. Castillo and P. Melin, “Comparison of hybrid intelligent systems, neural networks and interval type-2 fuzzy logic for time series prediction,” In International Joint Conference on Neural Networks, pages 3086.3091, 2007. [3] J. R. Castro, O. Castillo, P. Melin, and A. Rodr guez-D z, “A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks,” Information Sciences, 179(13):2175.2193, 2009. [4] N. Cazares-Castro, L. Aguilar, and O. Castillo, “Designing type-2 fuzzy logic system controllers via fuzzy lyapunov synthesis for the output regulator of a servomechanism with nonlinear backlash,” In IEEE International Conference on Systems, Man and Cybernetics, pages 268.273, 2009. [5] N. R. Cazarez-Castro, L. T. Aguilar, and O. Castillo, “Hybrid genetic-fuzzy optimization of a type-2 fuzzylogic controller,” In International Conference on Hybrid Intelligent Systems, pages 216–221, 2008. [6] S. Coupland and R. John, “A fast geometric method for defuzzification of type-2 fuzzy sets,” IEEE Transactions on Fuzzy Systems, 16(4):929–941, 2008. [7] L. Di Lascio, A. Gisolfi, and A. Nappi, “Medical differential diagnosis through type-2 fuzzy sets,” In IEEE International Conference on Fuzzy Systems, pages 371–376, 2005. [8] H. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Transactions on Fuzzy Systems, 12(4):524–539, 2004. [9] R. I. John, P. R. Innocent, and M. R. Barnes, “Neurofuzzy clustering of radiographic tibia image data using type 2 fuzzy sets,” Information Sciences, 125(1-4):65–82, 2000. [10] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, 132(1-4):195–220, 2001. [11] G. J. Klir and B. Yuan. Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995.51 [12] Q. Liang and J. Mendel, “Interval type-2 fuzzy logic systems,” In IEEE International Conference on Fuzzy Systems, volume 1, pages 328–333, 2000. [13] F.-J. Lin and P.-H. Chou, “Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network,” IEEE Transactions on Industrial Electronics, 56(1):178–193, 2009. [14] F. Liu, “An efficient centroid type-reduction strategy for general type-2 fuzzy logic system,” Information Sciences, 178(9):2224–2236, 2008. [15] L. Lucas, T. Centeno, and M. Delgado, “General type-2 fuzzy inference systems: Analysis, design and computational aspects,” In IEEE International Conference onFuzzy Systems, pages 1–6, 2007. [16] L. A. Lucas, T. M. Centeno, and M. R. Delgado, “Land cover classification based on general type-2 fuzzy classifiers,” International Journal of Fuzzy Systems, 10(3):207–216, 2008. [17] R. Mart nez, O. Castillo, and L. T.Aguilar, “Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms,” Information Sciences, 179(13):2158–2174, 2009. [18] P. Melin and O. Castillo, “An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory,” Information Sciences, 177(7):1543–1557, 2007. [19] J. Mendel. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2001. [20] J. Mendel, “Computing derivatives in interval type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy Systems, 12(1):84–98, 2004. [21] J. Mendel, “Type-2 fuzzy sets and systems: an overview,” IEEE Computational Intelligence Magazine, 2(1):20–29, 2007. [22] J. Mendel and R. John, “Type-2 fuzzy sets made simple,” IEEE Transactions on Fuzzy Systems, 10(2):117–127, 2002. [23] J. Mendel, R. John, and F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Transactions on Fuzzy Systems, 14(6):808–821, 2006. [24] J. M. Mendel, “Advances in type-2 fuzzy sets and systems,” Information Sciences, 177(1):84–110, 2007. [25] H. B. Mitchell, “Pattern recognition using type-II fuzzy sets,” Information Sciences, 170(2-4):409–418, 2005. [26] T. Ozen and J. M. Garibaldi, “Investigating adaptation in type-2 fuzzy logic systems applied to umbilical acidbase assessment,” In European Symposium on Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive Systems, pages 289–294, 2003. [27] R. Sep′uveda, O. Castillo, P. Melin, A. Rodr′ıguez-D′az, and O. Montiel, “Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic,” Information Sciences, 177(10):2023–2048, 2007. [28] W.-W. Tan and D. Wu, “Design of type-reduction strategies for type-2 fuzzy logic systems using genetic algorithms,” In L. C. Jain, V. Palade, and D. Srinivasan,editors, Advances in Evolutionary Computing for System Design, pages 169–187, Springer, 2007. [29] D. Wu and J. M. Mendel, “Enhanced Karnik-Mendel algorithms,” IEEE Transactions on Fuzzy Systems, 17(4):923–934, 2009. [30] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning–I,” Information Sciences, 8(3):199–249, 1975. [31] M. F. Zarandi, B. Rezaee, I. Turksen, and E. Neshat, “A type-2 fuzzy rule-based expert system model for stock price analysis,” Expert Systems with Applications,36(1):139–154, 2009. [32] J. Zeng and Z.-Q. Liu, “Type-2 fuzzy Markov random fields and their application to handwritten chinese character recognition,” IEEE Transactions on Fuzzy Systems, 16(3):747–760, 2008.
|