(3.238.174.50) 您好!臺灣時間:2021/04/20 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林順道
研究生(外文):Shune-dao Lin
論文名稱:IEEE 802.15.4a - 2007 2450 MHz 寬頻線性調頻展頻低速無線個人區域網路之基頻端訊號處理與電路設計
論文名稱(外文):Tha Baseband Signal Processing and Circuit Design for 2450 MHz Chirp Spread Spectrum of the IEEE 802.15.4a- 2007 Low Rate-Wireless Personal Area Network
指導教授:李志鵬李志鵬引用關係
指導教授(外文):Chih-Peng Li
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:69
中文關鍵詞:量化寬頻線性調頻展頻低速率無線個人區域網路基頻訊號處理IEEE 802.15.4a
外文關鍵詞:IEEE 802.15.4aBaseband signal processingLR-WPANquantize
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要為標準IEEE 802.15.4a – 2007的低速率無線個人區域網路中的2450 MHz頻帶寬頻線性調頻展頻(Chirp Spread Spectrum, CSS)的實體層,進行傳送端與接收端之基頻訊號處理的演算法設計與硬體電路實現,由於IEEE 802.15.4a這個標準的架構具有低成本、低功率消耗、體積小、容易布建等特性,因此在硬體複雜度與整體效能上必須取得一個平衡點(Trade Off)。
本論文中,從基頻電路演算法的部分開始設計、模擬並分析效能。傳送端部分,依照標準IEEE 802.15.4a – 2007 所訂定的架構來實現,接收端則完成整個基頻訊號演算法設計,其中包括了封包偵測、能量偵測、載波頻率偏移估測與補償、時間同步與解展頻演算法,並依照系統模擬結果進行量化,完成整個傳送端與接收端的基頻電路設計。整個系統在量化之前的效能比根據標準中所規定的接收靈敏度,預計的操作SNR還要好4dB,量化之後仍比預計好3dB。接著藉由Verilog語法的撰寫來完成整個基頻端演算法的電路實現,最後向國家晶片系統設計中心提出0.18μm製程的下線申請,並預計在晶片回來後進行完整的量測。

The thesis is mainly in algorithm design and implementation of hardware circuit of baseband signal processing at the transceiver of 2450 MHz band chirp spread spectrum in IEEE 802.15.4a – 2007 Low Rate-Wireless Personal Area Network (LR-WPAN). Due to the characteristic of LR-WPAN such as low cost, low power consumption, small size and easy to implementation, we have to take the complexity and the system performance into consideration.
In this thesis, we study on the algorithm design of baseband signal, and analysis the simulation result. At the transmitter, following the specification and realize it. At the receiver, designing the algorithm including the packet detection, energy detection and down-sampling, carrier frequency offset estimation and compensation, timing synchronization, and bi-orthogonal demapper. The system performance after quantizing is 3dB better than the receiver sensitivity we expected. After finishing the algorithm design of the transceiver, we implement the baseband signal circuit by using Verilog Code. Finally, we make an application to National Chip Implementation Center (CIC), and will measure the circuit after the chip tape out. The circuit is fabricated in a 0.18-μm CMOS technology.

致謝 ii
摘要 iii
Abstract iv
圖目錄 viii
表目錄 x
第一章 導論 1
1.1 前言 1
1.2 研究背景與動機 1
1.3 論文架構概述 2
第二章 IEEE 802.15.4a 實體層標準介紹 3
2.1 實體層概述 3
2.2 2450 MHz band實體層標準 3
2.2.1 實體層架構簡介 3
2.2.2 CSS的PPDU格式 5
2.3 寬頻線性調頻展頻 6
2.3.1 資料處理方式 7
2.3.2 雙正交符元對應編碼 7
2.3.3 差分四位元相位偏移調變 8
2.3.4 位元交錯 9
2.3.5 同步標頭 10
2.3.6 脈波整形 11
2.3.7 CSK 12
2.3.8 CSS的特性與傳輸方式 14
2.3.9 頻帶與通道數 17
2.4 接收機靈敏度 17
第三章 IEEE 802.15.4a 2450 MHz CSS 基頻演算法設計 19
3.1 收發機簡介 19
3.2 無線傳輸通道模型 20
3.3 接收機之基頻端演算法設計 21
3.3.1 封包偵測 21
3.3.2 匹配濾波器 24
3.3.3 能量偵測與降低取樣頻率 24
3.3.4 載波頻率偏移估測與補償 25
3.3.5 DQPSK解調變 31
3.3.6 時間同步與SFD 32
3.3.7 解雙正交展頻 33
3.3.8 封包偵測-誤警與遺失機制 34
3.4 接收機演算法模擬 35
第四章 基頻端電路設計 37
4.1 傳送端 37
4.1.1 傳送端量化考量 38
4.1.2 DQPSK硬體實現考量 39
4.1.3 CSK硬體實現考量 40
4.2 接收端 41
4.2.1 接收端量化 41
4.2.2 封包偵測 43
4.2.3 載波頻率偏移 43
4.2.4 時間同步 45
4.2.5 解雙正交展頻 46
第五章 電路架構與模擬量測 47
5.1 設計考量 47
5.2 模擬驗證結果 48
5.3 晶片外觀 49
第六章 結論 51
中英對照表 52
全名縮寫對照表 55
參考文獻 57


[1]IEEE Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std. 802.15.4a-2007, Sep. 2007.
[2]IEEE Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std. 802.15.4-2006, Sep. 2006.
[3]C.E. Cook and M. Bernfeld, Radar signals: an introduction to theory and application, New York: Academic Press, 1967, pp.130–133.
[4]Y.-S. Kim, J.-W. Chong, and S. Liu, “A new dual-band filtering method for chirp spread spectrum” IEEE Int. Conf. Wireless Comm., Networking and Mobile Comput. (WiCOM), Dalian, China, 2008, pp. 1–4.
[5]G. Lu, L. Greenstein, and P. Spasojević, “A new probability density function enhancing packet detection analysis for low SNR links,” IEEE Global Telecommunications. Conf. (GLOGECOM), St. Louis, Mo, USA, 2005, pp. 1273–1278.
[6]J. Volder, “The CORDIC trigonometric computing technique,” IEEE Trans. Comput., vol. 8, pp. 330–334, Sep. 1959.
[7]C. C. Wang, J. M. Huang, C. Y. Chang, K. T. Cheng, and C. P. Li, “A 6.57 mW ZigBee transceiver for 868/915 MHz band,” in Proc. IEEE Int. Symposium Circuits Syst. (ISCAS), Kos Island, Greece, 2006, pp. 5195–5198.
[8]C. C. Wang, J. M. Huang, J. M. Huang, C. Y. Chang, and C. P. Li, “ZigBee 868/915-MHz modulator/demodulator for wireless personal area network,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 7, July 2008.
[9]Y.H. Hu, ”The quantization effects of the CORDIC algorithm,” IEEE Trans. Signal Process., vol. 40, no. 4, pp. 834–844, Apr. 1992.
[10]S.-H. Jang, S.-H. Yoon, and J.-W. Chong, “A new packet detection algorithm for IEEE 802.15.4a DBO-CSS in AWGN channel,” IEEE Int. Symposium Circuits Syst. (ISCAS), Seattle, Washington, USA, 2008, pp. 1020–1023.
[11]J.-W. Yun, S.-H. Yoon, and J.-W. Chong, “ A low complexity packet detection algorithm for CSS in AWGN channel,” IEEE Int. Symp. Comm. and Information Technol.(ISCIT), Incheon, Korea, 2009, pp. 1051–1054.
[12]S.-H. Jang, S.-H. Baik, Y.-S. Kim, and J.-W. Chong, “Robust and accurate packet detection and frequency offset compensation for CSS system,” The Third Int. Conf. Mobile Ubiquitous Comput., Syst., Services and Technol. (UBICOMM), Sliema, Malta, 2009, pp. 169–172.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔